Chapitre I - Les suites

Rémi Caneri

Table des matières

Ch	apitre I - Les suites	1
I.	Raisonnement par récurrence	5
II.	Limites d'une suite	ţ
	1. Généralités	!
	a. limite infinie	!
	b. limite finie	
	c. Suites sans limite	
	2. Opérations sur les limites	
	3. limites et comparaison	
III	Convergence d'une suite	13
IV	Algorithmes	17
v.	Approfondissement	17
	1. Suites adjacentes	17
	2. Relation de récurrence d'ordre 2 à coefficients constants	18
	3 Etude de la convergence de la méthode de Héron	25

I. Raisonnement par récurrence

Théorème - Raisonnement par récurrence

Soit $\mathcal{P}(n)$ une propriété dépendant d'un entier naturel n. On suppose que :

- $\mathcal{P}(0)$ est vraie.
- Pour tout entier naturel k fixé, si $\mathcal{P}(k)$ est vraie alors $\mathcal{P}(k+1)$ est vraie.

Alors pour tout entier naturel n, $\mathcal{P}(n)$ est vraie.

$$(\mathcal{P}(0) \text{ et } (\forall k \in \mathbb{N}, \mathcal{P}(k) \implies \mathcal{P}(k+1))) \implies \forall n \in \mathbb{N}, \mathcal{P}(n)$$

Exemple

Soit (u_n) la suite définie par $u_0=0$ et $\forall n\in\mathbb{N}, u_{n+1}=u_n+n+1$. Démontrer que la propriété $\mathcal{P}(n):u_n=\frac{n(n+1)}{2}$ est vraie pour tout entier naturel n.

Réponse

- Initialisation : $\frac{0(0+1)}{2} = 0 = u_0 \geqslant 0$ donc $\mathcal{P}(0)$ est vraie.
- <u>Hérédité</u>: soit $k \in \mathbb{N}$ tel que $\mathcal{P}(k)$ soit vraie, c'est-à-dire $u_k = \frac{k(k+1)}{2}$. Démontrons que $\mathcal{P}(k+1)$ est vraie, c'est-à-dire $u_{k+1} = \frac{(k+1)(k+2)}{2}$.

est vraie, c'est-à-dire
$$u_{k+1} = \frac{(k+1)(k+2)}{2}$$
.
$$u_{k+1} = \underbrace{u_k + k + 1 = \frac{k(k+1)}{2} + k + 1}_{\text{hypothèse de récurrence}} = (k+1)\left(\frac{k}{2} + 1\right) = (k+1)\frac{k+2}{2} = \frac{(k+1)(k+2)}{2}$$

Donc $\mathcal{P}(k+1)$ est vraie.

Ainsi, $\forall k \in \mathbb{N}, \mathcal{P}(k)$ est vraie $\implies \mathcal{P}(k+1)$ est vraie.

• Conclusion: $\forall n \in \mathbb{N}, \mathcal{P}(n)$ est vraie, c'est-à-dire, $\forall n \in \mathbb{N}, u_n = \frac{n(n+1)}{2}$.

Théorème - Raisonnement par récurrence à partir d'un certain rang

Soit $n_0 \in \mathbb{N}$ et $\mathcal{P}(n)$ une propriété définie pour $n \geqslant n_0$. On suppose que :

- $\mathcal{P}(n_0)$ est vraie.
- Pour tout entier naturel $k \ge n_0$ fixé, si $\mathcal{P}(k)$ est vraie alors $\mathcal{P}(k+1)$ est vraie.

Alors pour tout entier naturel $n \ge n_0$, $\mathcal{P}(n)$ est vraie.

$$(\mathcal{P}(n_0) \text{ et } (\forall k \in \mathbb{N} | k \geqslant n_0, \mathcal{P}(k) \implies \mathcal{P}(k+1))) \implies \forall n \in \mathbb{N}, n \geqslant n_0 \implies \mathcal{P}(n)$$

Exemple

Démontrer que $\forall n \in [6, +\infty], 6n + 7 \leq 2^n$

Réponse

Posons $\mathcal{P}(n): 6n+7 \leqslant 2^n$

- Initialisation: $6 \times 6 + 7 = 43$ et $2^6 = 64$ or 43 < 64 donc $\mathcal{P}(6)$ est vraie.
- <u>Hérédité</u>: soit $k \in [\![6,+\infty]\!]$ tel que $\mathcal{P}(k)$ soit vraie, c'est-à-dire $6k+7 \leqslant 2^k$. Démontrons que $\mathcal{P}(k+1)$ est vraie, c'est-à-dire $6(k+1)+7 \leqslant 2^{k+1}$.

$$2^{k+1} = 2 \times 2^k \geqslant 2 \times (6k+7) = 12k+14$$

hypothèse de récurrence

Or $6(k+1)+7=6k+13 \le 12k+14$ car $k \in \mathbb{N}$. Donc $6(k+1)+7 \le 2^{k+1}$

Ainsi $\mathcal{P}(k+1)$ est vraie.

Ainsi, $\forall k \in \mathbb{N}, \mathcal{P}(k)$ est vraie $\implies \mathcal{P}(k+1)$ est vraie.

• Conclusion: $\forall n \in \llbracket 6, +\infty \rrbracket, \mathcal{P}(n)$ est vraie, c'est-à-dire, $\forall n \in \llbracket 6, +\infty \rrbracket, 6n+7 \leqslant 2^n$.

Propriété - Inégalité de Bernoulli

$$\forall a \in \mathbb{R}_+^*, \forall n \in \mathbb{N}, (1+a)^n \geqslant 1+na$$

Démonstration - à connaître

Soit $a \in \mathbb{R}_+^*$.

Posons $\mathcal{P}(n): (1+a)^n \geqslant 1+na$.

- Initialisation : $(1+a)^0 = 1$ et 1+0a = 1 sonc $(1+a)^0 \ge 1+0a$ ainsi $\mathcal{P}(0)$ est vraie.
- <u>Hérédité</u>: soit $k \in \mathbb{N}$ tel que $\mathcal{P}(k)$ soit vraie, c'est-à-dire $(1+a)^k \geqslant 1+ka$. Démontrons que $\mathcal{P}(k+1)$ est vraie, c'est-à-dire $(1+a)^{k+1} \geqslant 1+(k+1)a$.

$$(1+a)^{k+1} = \underbrace{(1+a) \times (1+a)^k}_{\text{hypothèse de récurrence}} \ge 1+a+ka+ka^2 \ge 1+(k+1)a+ka^2 \ge 1+(k+1)a$$

car k et a sont positifs.

Ainsi $\mathcal{P}(k+1)$ est vraie.

Ainsi, $\forall k \in \mathbb{N}, \mathcal{P}(k)$ est vraie $\implies \mathcal{P}(k+1)$ est vraie.

• Conclusion : $\forall n \in \mathbb{N}, \mathcal{P}(n)$ est vraie, c'est-à-dire, $\forall n \in \mathbb{N}, (1+a)^n \geqslant 1+na$.

II. Limites d'une suite

1. Généralités

a. limite infinie

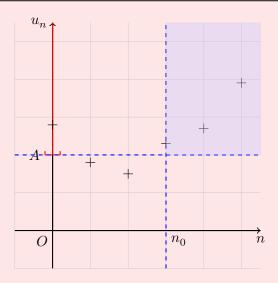
Définition

Soit (u_n) une suite définie sur $\mathbb N$ ou une partie de $\mathbb N$.

On dit que (u_n) tend vers $+\infty$ si et seulement si tout intervalle de la forme $[A, +\infty[$ avec $A \in \mathbb{R}$ contient tous les termes u_n à partir d'un certain rang. On note alors $\lim_{n \to +\infty} u_n = +\infty$. On dit que (u_n) diverge vers $+\infty$.

$$\lim_{n\to +\infty} u_n = +\infty \iff (\forall A\in \mathbb{R}, \exists n_0\in \mathbb{N}, \forall n\in \mathbb{N}, n\geqslant n_0 \implies u_n\in [A, +\infty[)$$

Interprétation géométrique



Pour tout nombre réel A, il existe un entier naturel n_0 tel que les points de coordonnées (n, u_n) avec $n \ge n_0$ sont tous dans la partie du plan bleue, c'est-à-dire situés au-dessus de la droite d'équation y = A.

Définition

Soit (u_n) une suite définie sur $\mathbb N$ ou une partie de $\mathbb N$.

On dit que (u_n) tend vers $-\infty$ si et seulement si tout intervalle de la forme $]-\infty,A]$ avec $A\in\mathbb{R}$ contient tous les termes u_n à partir d'un certain rang. On note alors $\lim_{n\to+\infty}u_n=-\infty$. On dit que (u_n) diverge vers $-\infty$.

$$\lim_{n \to +\infty} u_n = -\infty \iff (\forall A \in \mathbb{R}, \exists n_0 \in \mathbb{N}, \forall n \in \mathbb{N}, n \geqslant n_0 \implies u_n \in]-\infty, A])$$

Propriété

Soit $k \in \mathbb{R}$.

- Si k > 0 alors les suites (kn), (kn^2) , $(k\sqrt{n})$ et (ke^n) divergent vers $+\infty$.
- Si k < 0 alors les suites (kn), (kn^2) , $(k\sqrt{n})$ et (ke^n) divergent vers $-\infty$.

Démonstration - à connaître en partie

Intéressons-nous à la suite (kn).

Soit $k \in \mathbb{R}_{+}^{*}$.

Soit $A \in \mathbb{R}$.

Posons $\forall n \in \mathbb{N}, u_n = kn$

Si $A \leq 0$ alors $\forall n \in \mathbb{N}, kn \geq 0 \geq A$ auquel cas $\forall n \in \mathbb{N}, u_n \in [A, +\infty[$.

En posans $n_0 = 0$, on a $\forall n \ge n_0, u_n \ge A$

Supposons maintenant que A > 0.

$$u_n \geqslant A \iff kn \geqslant A \iff n \geqslant \frac{A}{k}$$

Posons $n_0 = \left\lceil \frac{A}{k} \right\rceil$ la partie entière supérieure de $\frac{A}{k}$, c'est-à-dire le plus petit entier supérieur ou égal à $\frac{A}{k}$. Ainsi $\forall n \geqslant n_0, u_n \geqslant A$

Donc $\forall A \in \mathbb{R}, \exists n_0 \in \mathbb{N} \forall n \in \mathbb{N}, n \geqslant n_0 \implies u_n \in [A, +\infty[$

Ainsi $\lim_{n \to +\infty} u_n = +\infty$ ou encore $\lim_{n \to +\infty} kn = +\infty$

De même pour les suites (kn^2) et $(k\sqrt{n})$.

Intéressons-nous maintenant à la suite (ke^n) . démonstration à connaître

 $\overline{\text{Posons } \forall n \in \mathbb{N}, v_n = ke^n}$

Si $A\leqslant 0$ alors $\forall n\in\mathbb{N}, ke^n\geqslant 0\geqslant A$ auquel cas $\forall n\in\mathbb{N}, v_n\in[A,+\infty[.$

En posans $n_0 = 0$, on a $\forall n \ge n_0, v_n \ge A$

Supposons maintenant que A > 0.

$$v_n \geqslant A \iff ke^n \geqslant A \iff e^n \geqslant \frac{A}{k} > 0$$

On rappelle que $\forall y \in \mathbb{R}_+^*, \exists ! x \in \mathbb{R}, e^x = y$

$$\frac{A}{k} > 0 \implies \exists ! x_0 \in \mathbb{R}, e^{x_0} = \frac{A}{k}$$

Posons $n_0 = [x_0]$ (partie entière supérieure). On a donc $n_0 \ge x_0$.

La fonction exponentielle étant strictement croissante, on a :

$$\forall n \in \mathbb{N}, n \geqslant n_0 \implies e^n \geqslant e^{n_0} \geqslant e^{x_0} = \frac{A}{k}$$

Donc
$$\forall n \in \mathbb{N}, n \geqslant n_0 \implies e^n \geqslant \frac{A}{k}$$

$$\forall n \in \mathbb{N}, n \geqslant n_0 \implies ke^n \geqslant A$$

$$\forall n \in \mathbb{N}, n \geqslant n_0 \implies v_n \in [A, +\infty[$$

Donc $\forall A \in \mathbb{R}, \exists n_0 \in \mathbb{N} \forall n \in \mathbb{N}, n \geqslant n_0 \implies v_n \in [A, +\infty[$

Ainsi $\lim_{n \to +\infty} v_n = +\infty$ ou encore $\lim_{n \to +\infty} ke^n = +\infty$

Exemple

La suite $3n^2$ diverge vers $+\infty$.

La suite $-\pi e^n$ diverge vers $-\infty$.

Théorème

Toute suite croissante et non majorée diverge vers $+\infty$.

Démonstration - à connaître

Soit (u_n) une suite croissante et non majorée.

 (u_n) est non majorée donc $\forall A \in \mathbb{R}, \exists n_0 \in \mathbb{N}, u_{n_0} \geqslant A.$

De plus (u_n) est croissante donc $\forall A \in \mathbb{R}, \exists n_0 \in \mathbb{N}, \forall n \in \mathbb{N}, n \geqslant n_0 \implies u_n \geqslant u_{n_0} \geqslant A$

Ainsi $\lim_{n \to +\infty} u_n = +\infty$

Exemple

Soit la suite (u_n) définie sur \mathbb{N} par $u_n = 3n^2 + 2$.

- 1. Démontrer que la suite (u_n) est croissante.
- 2. Démontrer que la suite (u_n) est non majorée.
- 3. En déduire la limite de la suite (u_n) .

Réponse

- 1. $u_{n+1}-u_n=(3(n+1)^2+2)-(3n^2+2)=3\left[(n+1)^2-n^2\right]=3(n+1-n)(n+1+n)$ $u_{n+1}-u_n=3\times 1\times (2n+1)=6n+3>0$ car $n\geqslant 0$ donc la suite (u_n) est croissante.
- $\begin{array}{l} 2. \ \operatorname{Soit} \ A \in \mathbb{R}. \\ u_n \geqslant A \iff 3n+2 \geqslant A \iff 3n \geqslant A-2 \iff n \geqslant \frac{A-2}{3} \\ \operatorname{Posons} \ n_0 = \left\lceil \frac{A-2}{3} \right\rceil. \\ \forall n \geqslant n_0, u_n \geqslant A. \\ \operatorname{Ainsi} \ \forall A \in \mathbb{R}, \exists n_0 \in \mathbb{N}, \forall n \in \mathbb{N}, n \geqslant n_0 \implies u_n \geqslant A \\ \operatorname{Donc} \ \operatorname{la} \ \operatorname{suite} \ (u_n) \ \operatorname{n'est} \ \operatorname{pas} \ \operatorname{majorée}. \end{array}$
- 3. La suite (u_n) est croissante et non majorée donc diverge vers $+\infty.$ $\lim_{n\to +\infty}u_n=+\infty$

Remarque

Toute suite décroissante et non minorée diverge vers $-\infty$.

b. limite finie

Définition

Soit (u_n) une suite définie sur \mathbb{N} ou une partie de \mathbb{N} . Soit ℓ un nombre réel.

On dit que (u_n) tend vers ℓ si et seulement si tout intervalle ouvert contenant ℓ contient tous les termes u_n à partir d'un certain rang. On note alors $\lim_{n\to +\infty} u_n = \ell$. On dit que (u_n) converge vers ℓ .

 $\lim_{n \to +\infty} u_n = \ell \iff (\forall I \text{ intervalle ouvert tel que } \ell \in I, \exists n_0 \in \mathbb{N}, \forall n \in \mathbb{N}, n \geqslant n_0 \implies u_n \in I)$

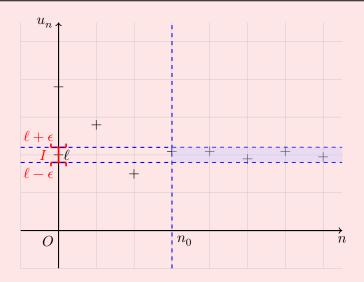
Remarque

On peut aussi écrire :

$$\lim_{n \to +\infty} u_n = \ell \iff (\forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n \in \mathbb{N}, n \geqslant n_0 \implies |u_n - \ell| < \epsilon)$$

7

Interprétation géométrique



Pour tout intervalle ouvert I, il existe un entier naturel n_0 tel que les points de coordonnées (n,u_n) avec $n \geqslant n_0$ sont tous dans la partie du plan bleue, c'est-à-dire entre les droites d'équation $y = \ell - \epsilon$ et $y = \ell + \epsilon$.

Propriété

Soit $k \in \mathbb{R}$.

Les suites $\left(\frac{k}{n}\right)_{n\in\mathbb{N}^*}$, $\left(\frac{k}{n^2}\right)_{n\in\mathbb{N}^*}$, $\left(\frac{k}{\sqrt{n}}\right)_{n\in\mathbb{N}^*}$ et $(ke^{-n})_{n\in\mathbb{N}}$ convergent vers 0.

Démonstration

Intéressons-nous à la suite $(\frac{k}{n})$.

Soit $k \in \mathbb{R}$.

Posons $\forall n \in \mathbb{N}^*, u_n = \frac{k}{n}$.

Soit I un intervalle ouvert tel que $0 \in I$.

Soient a et b deux réels tels que I=]a,b[. On a donc a<0< b $u_n \in I \iff a<\frac{k}{n} < b$

$$a < \frac{k}{n} < b \iff an < k < bn \iff \begin{cases} an < k \\ k < bn \end{cases} \iff \begin{cases} n > \frac{k}{a} \\ \frac{k}{b} < n \end{cases} \iff \begin{cases} n > \frac{k}{a} \\ n > \frac{k}{b} \end{cases} \iff n > \max\left(\frac{k}{a}, \frac{k}{b}\right)$$

8

Posons $n_0 = \left\lceil \max\left(\frac{k}{a}, \frac{k}{b}\right) \right\rceil$

Ainsi $\forall n \geqslant n_0, u_n \in I$

Donc $\forall I$ intervalle ouvert tel que $0 \in I, \exists n_0 \in \mathbb{N}, \forall n \in \mathbb{N}, n \geqslant n_0 \implies u_n \in I$

Donc (u_n) converge vers 0. Soit $\lim_{n\to+\infty}\frac{k}{n}=0$.

De même pour les suites $\left(\frac{k}{n^2}\right)_{n\in\mathbb{N}^*}$ et $\left(\frac{k}{\sqrt{n}}\right)_{n\in\mathbb{N}^*}$.

Démonstration - suite

Intéressons-nous à la suite $\left(ke^{-n}\right)_{n\in\mathbb{N}}$.

Soit $k \in \mathbb{R}^*$.

Posons $\forall n \in \mathbb{N}^*, u_n = ke^{-n}$.

Soit I un intervalle ouvert tel que $0 \in I$.

Soient a et b deux réels tels que I =]a, b[. On a donc a < 0 < b

$$u_n \in I \iff a < ke^{-n} < b$$

Si
$$k > 0$$
 alors $ke^{-n} > 0 > a$. De plus, $\exists ! x_0 \in \mathbb{R}, e^{x_0} = \frac{b}{k}$

$$ke^{-n} < b \iff e^{-n} < \frac{b}{k} \iff e^{-n} < e^{x_0} \iff -n < x_0 \iff n > -x_0.$$

Posons $n_0 = \lceil -x_0 \rceil$

 $\forall n \geqslant n_0, ke^{-n} < b$

 $\forall n \geqslant n_0, a < u_n < b$

Si
$$k < 0$$
 alors $ke^{-n} < 0 < b$. De plus, $\exists ! x_0 \in \mathbb{R}, e^{x_1} = \frac{a}{k}$

$$ke^{-n} > a \iff e^{-n} < \frac{a}{k} \iff e^{-n} < e^{x_1} \iff -n < x_1 \iff n > -x_1.$$

Posons $n_0 = \lceil -x_1 \rceil$

 $\forall n \geqslant n_0, ke^{-n} < b$

 $\forall n \geqslant n_0, a < u_n < b$

Ainsi $\forall I$ intervalle ouvert tel que $0 \in I, \exists n_0 \in \mathbb{N}, \forall n \in \mathbb{N}, n \geqslant n_0 \implies u_n \in I$

Donc (u_n) converge vers 0. Soit $\lim_{n\to+\infty} ke^{-n} = 0$.

c. Suites sans limite

Définition

Il existe des suites sans limite. On dit qu'elles divergent.

Exemple

La suite définie sur \mathbb{N} par $u_n=(-1)^n$ diverge car n'a pas de limite.

En effet, $\forall n \in \mathbb{N}, u_{2n} = 1$ et $u_{2n+1} = -1$.

On ne peut donc pas déterminer de limite à la suite (u_n) .

2. Opérations sur les limites

Les règles opératoires sur les limites sont les suivantes :

Somme de deux limites

$\operatorname{Si}\lim_{n\mapsto +\infty}u_n=$	ℓ	ℓ	ℓ	$+\infty$	$+\infty$	$-\infty$
Et si $\lim_{n \mapsto +\infty} v_n =$	ℓ'	$+\infty$	$-\infty$	$+\infty$	$-\infty$	$-\infty$
alors $\lim_{n \to +\infty} u_n + v_n = 0$	$\ell + \ell'$	$+\infty$	$-\infty$	$+\infty$	FI	$-\infty$

Produit de deux limites

$\operatorname{Si} \lim_{n \mapsto +\infty} u_n =$	ℓ	$\ell > 0$	$\ell > 0$	$\ell < 0$	$\ell < 0$	$+\infty$	$+\infty$	$-\infty$	0
Et si $\lim_{n \mapsto +\infty} v_n =$	ℓ'	$+\infty$	$-\infty$	$+\infty$	$-\infty$	$+\infty$	$-\infty$	$-\infty$	$\pm \infty$
alors $\lim_{n \to +\infty} u_n \times v_n = 0$	$\ell \times \ell'$	$+\infty$	$-\infty$	$-\infty$	$+\infty$	$+\infty$	$-\infty$	$+\infty$	FI

Quotient de deux limites

Cas où $\lim_{n\mapsto +\infty}v_n\neq 0$

Si $\lim_{n \mapsto +\infty} u_n =$	ℓ	ℓ	$+\infty$	$+\infty$	$-\infty$	$-\infty$	$\pm \infty$
Et si $\lim_{n \to +\infty} v_n =$	$\ell' \neq 0$	$\pm \infty$	$\ell' > 0$	$\ell' < 0$	$\ell' > 0$	$\ell' < 0$	$\pm \infty$
alors $\lim_{n \to +\infty} \frac{u_n}{v_n} =$	$\frac{\ell}{\ell'}$	0	$+\infty$	$-\infty$	$-\infty$	$+\infty$	FI

Cas où $\lim_{n \to +\infty} v_n = 0$

Si $\lim_{n \to +\infty} u_n =$	$\ell > 0$ ou $+\infty$	$\ell < 0$ ou $-\infty$	$\ell > 0$ ou $+\infty$	$\ell < 0$ ou $-\infty$	0
Et si lim v —	0 avec	0 avec	0 avec	0 avec	0
Et si $\lim_{n \to +\infty} v_n =$	$\forall n \in \mathbb{N}, v_n > 0$	$\forall n \in \mathbb{N}, v_n > 0$	$\forall n \in \mathbb{N}, v_n < 0$	$\forall n \in \mathbb{N}, v_n < 0$	
alors $\lim_{n \to +\infty} \frac{u_n}{v_n} =$	$+\infty$	$-\infty$	$-\infty$	$+\infty$	FI

Remarque

Dans les tableaux ci-dessus, FI signifie forme indéterminée.

Il faut alors trouver une autre façon de déterminer la limite de la suite $(u_n+v_n)_{n\in\mathbb{N}}, \ (u_n\times v_n)_{n\in\mathbb{N}}$ ou

On dit qu'il faut lever l'indétermination.

Exemple

- 1. Déterminer la limite de la suite $(w_n)_{n\in\mathbb{N}}$ de terme général $w_n=17n^2-\frac{3}{\sqrt{n}}$.
- 2. Déterminer la limite de la suite $\left(p_n\right)_{n\in\mathbb{N}}$ de terme général $p_n=3n^2-2n.$
- 3. Déterminer la limite de la suite $(p_n)_{n\in\mathbb{N}}$ de terme général $q_n=\frac{n^2+1}{3n-1}$.

Réponse

1. Posons $u_n=17n^2$ et $v_n=-\frac{3}{\sqrt{n}}.$ On a alors $w_n=u_n+v_n.$

$$\text{Or} \lim_{\substack{n \mapsto +\infty \\ n \mapsto +\infty}} u_n = +\infty$$

$$\text{Et} \lim_{\substack{n \mapsto +\infty \\ n \mapsto +\infty}} v_n = 0$$

Et
$$\lim_{n \to +\infty} v = 0$$

Et
$$\lim_{n \to +\infty} v_n = 0$$

Donc $\lim_{n \to +\infty} w_n = +\infty$

2. Posons
$$u_n = 3n^2$$
 et $v_n = -2n$. On a alors $p_n = u_n + v_n$.

Or
$$\lim u_n = +\infty$$

Et
$$\lim_{n \to +\infty} v_n = -\infty$$

Donc
$$\lim_{n \to \infty} p_n = F$$

Or $\lim_{n\mapsto +\infty} u_n = +\infty$ Et $\lim_{n\mapsto +\infty} v_n = -\infty$ Donc $\lim_{n\mapsto +\infty} p_n = FI$ Il faut donc lever l'indétermination.

$$p_n = 3n^2 - 2n = n^2 \left(3 - \frac{2}{3}\right)$$

Il faut donc lever l'indétermination.
$$p_n = 3n^2 - 2n = n^2 \left(3 - \frac{2}{n}\right)$$
 Posons $u'_n = n^2$ et $v'_n = 3 - \frac{2}{n}$. On a alors $p_n = u'_n \times v'_n$. Or $\lim_{n \mapsto +\infty} u'_n = +\infty$ et $\lim_{n \mapsto +\infty} v'_n = 3$ Donc $\lim_{n \mapsto +\infty} p_n = +\infty$.

Or
$$\lim u'_n = +\infty$$
 et $\lim v'_n = -\infty$

Donc
$$\lim_{n \to +\infty} p_n = +\infty$$
.

Exemple - suite

Réponse - suite

3. Posons
$$u_n = n^2 + 1$$
 et $v_n = 3n - 1$. On a alors $q_n = \frac{u_n}{v_n}$.

Et
$$\lim_{n \to +\infty} v_n = +\infty$$

Or
$$\lim_{n \to +\infty} u_n = +\infty$$

Et $\lim_{n \to +\infty} v_n = +\infty$
Donc $\lim_{n \to +\infty} q_n = FI$

Il faut donc lever l'indétermination.
$$q_n = \frac{n^2 + 1}{3n - 1} = \frac{n^2 \left(1 + \frac{1}{n^2}\right)}{n(3 - \frac{1}{n})} = n \times \frac{1 + \frac{1}{n^2}}{3 - \frac{1}{n}}$$

Or
$$\lim_{n \to +\infty} 1 + \frac{1}{n^2} = 1$$
 et $\lim_{n \to +\infty} 3 - \frac{1}{n} = 3$ donc $\lim_{n \to +\infty} \frac{1 + \frac{1}{n^2}}{3 - \frac{1}{n}} = \frac{1}{3}$ De plus $\lim_{n \to +\infty} n = +\infty$

De plus
$$\lim_{n \to +\infty} n = +\infty$$

Donc
$$\lim_{n \to +\infty} n \times \frac{1 + \frac{1}{n^2}}{3 - \frac{1}{n}} = +\infty$$

limites et comparaison

Propriété - admise

Soient $(u_n)_{n \in \mathbb{N}}$ et $(v_n)_{n \in \mathbb{N}}$ deux suites convergentes telles qu'à partir d'un certain rang, $u_n < v_n$. Alors $\lim_{n \to +\infty} u_n \leq \lim_{n \to +\infty} v_n$

Exemple

Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par $u_n=\frac{3}{n}-\frac{1}{2^n}$. On suppose $(u_n)_{n\in\mathbb{N}}$ convergente (on pourra le démontrer dans le paragraphe sur les suites géométriques).

- 1. Démontrer que $\forall n \in \mathbb{N}, u_n < \frac{3}{n}$.
- 2. En déduire que $\lim_{n \to +\infty} u_n \leq 0$.

Réponse

- $\begin{array}{l} \text{1. Soit } n \in \mathbb{N}. \ \frac{1}{2^n} = \left(\frac{1}{2}\right)^n > 0. \\ \text{Donc } -\frac{1}{2^n} < 0 \ \text{puis } \frac{3}{n} \frac{1}{2^n} < \frac{3}{n}. \\ \text{D'où } u_n < \frac{3}{n}. \end{array}$
- 2. On sait que $\lim_{n \to +\infty} \frac{3}{n} = 0$. Donc $(u_n)_{n \in \mathbb{N}}$ et $(\frac{3}{n})_{n \in \mathbb{N}}$ sont convergentes. De plus, $u_n < \frac{3}{n}$. $\text{Donc } \lim_{n\mapsto +\infty} u_n \leqslant \lim_{n\mapsto +\infty} \frac{3}{n}, \text{ c'est-\`a-dire } \lim_{n\mapsto +\infty} u_n \leqslant 0.$

Propriété

Soient $\left(u_{n}\right)_{n\in\mathbb{N}}$ et $\left(v_{n}\right)_{n\in\mathbb{N}}$ deux suites convergentes telles qu'à partir d'un certain rang, $u_{n}\leqslant v_{n}$.

11

- si $\lim_{n \to +\infty} u_n = +\infty$ alors $\lim_{n \to +\infty} v_n = +\infty$
- si $\lim_{n \mapsto +\infty} v_n = -\infty$ alors $\lim_{n \mapsto +\infty} u_n = -\infty$

Démonstration - à connaître

Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites convergentes telles que $\forall n\in\mathbb{N}, u_n\leqslant v_n$. Démontrons que si $\lim_{n\mapsto+\infty}u_n=+\infty$ alors $\lim_{n\mapsto+\infty}v_n=+\infty$

Soit $A \in \mathbb{R}$.

 $\lim_{\substack{n \to +\infty \\ n \to +\infty}} u_n = +\infty \text{ donc } \exists n_1 \in \mathbb{N}, \forall n \geqslant n_1, u_n \in [A; +\infty[$

Soit encore $\exists n_1 \in \mathbb{N}, \forall n \geqslant n_1, u_n \geqslant A$

A partir d'un certain rang, $u_n \leqslant v_n$ donc $\exists n_2, \forall n \geqslant n_2, u_n \leqslant v_n$.

Posons $n_0 = \max(n_1, n_2)$.

$$\forall n \geqslant n_0, A \leqslant u_n \leqslant v_n$$

$$\forall n \geqslant n_0, v_n \geqslant A$$

$$\forall n\geqslant n_0,v_n\in [A;+\infty[$$

Ainsi $\forall A \in \mathbb{R}, \exists n_0 \in \mathbb{N}, n \geqslant n_0 \implies v_n \in [A; +\infty[$

Donc $\lim_{n\mapsto +\infty} v_n = +\infty$

Exemple

Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par $u_n=n+\cos(n).$

- 1. Démontrer que $\forall n \in \mathbb{N}, u_n \geqslant n-1.$
- 2. En déduire que $\lim_{n\mapsto +\infty} u_n$.

Réponse

- 1. Soit $n \in \mathbb{N}$. $\cos(n) \ge 0$.
 - Donc $n + \cos(n) \ge n 1$.

D'où $u_n \ge n-1$.

2. $\lim_{n \mapsto +\infty} n - 1 = +\infty$ et que $\forall n \in \mathbb{N}, u_n \geqslant n - 1$.

 $\operatorname{Donc}_{n \to +\infty}^{n \to +\infty} u_n = +\infty$

Théorème des gendarmes

Soient $\left(u_n\right)_{n\in\mathbb{N}},\,\left(v_n\right)_{n\in\mathbb{N}}$ et $\left(w_n\right)_{n\in\mathbb{N}}$ trois suites. Soit $\ell\in\mathbb{R}.$ Si

- à partir d'un certain rang, $u_n \leqslant v_n \leqslant w_n$
- $\bullet \ \lim_{n\mapsto +\infty} u_n = \lim_{n\mapsto +\infty} w_n = \ell$

Alors $\lim_{n \to +\infty} v_n = \ell$

Démonstration

Soient $(u_n)_{n\in\mathbb{N}}, \ (v_n)_{n\in\mathbb{N}}$ et $(w_n)_{n\in\mathbb{N}}$ trois suites telles qu'à partir d'un certain rang, $u_n\leqslant v_n\leqslant w_n$. Soit $\ell \in \mathbb{R}$.

De plus $\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} w_n = \ell$

Soit $I =]\alpha; \beta[$ un intervalle ouvert contenant ℓ .

$$\lim_{n \mapsto +\infty} u_n = \ell \text{ donc } \exists n_1 \in \mathbb{N}, \forall n \in \mathbb{N}, n \geqslant n_1 \implies u_n \in I$$

$$\lim_{n \to +\infty} w_n = \ell \text{ donc } \exists n_2 \in \mathbb{N}, \forall n \in \mathbb{N}, n \geqslant n_2 \implies w_n \in I$$

A partir d'un certain rang, $u_n \leqslant v_n \leqslant w_n$ donc $\exists n_3 \in \mathbb{N}, \forall n \in \mathbb{N}, n \geqslant n_3 \implies u_n \leqslant v_n \leqslant w_n$

Posons
$$n_0 = \max(n_1, n_2, n_3)$$
.

$$\forall n \in \mathbb{N}, n \geqslant n_0 \implies \begin{cases} u_n \in I \\ w_n \in I \\ u_n \leqslant v_n \leqslant w_n \end{cases}$$

$$\forall n \in \mathbb{N}, n \geqslant n_0 \implies \alpha < u_n \leqslant v_n \leqslant w_n < \beta$$

$$\forall n \in \mathbb{N}, n \geqslant n_0 \implies \alpha < u_n \leqslant v_n \leqslant w_n < \beta$$

$$\forall n \in \mathbb{N}, n \geqslant n_0 \implies v_n \in I$$

Donc
$$\lim_{n\mapsto +\infty} v_n = \ell$$

Exemple

Soit $(v_n)_{n\in\mathbb{N}}$ la suite définie par $v_n=\frac{(-1)^n}{n^2}.$ Déterminer $\lim_{n\mapsto +\infty}v_n.$

Réponse

Soit $n \in \mathbb{N}$.

On a
$$-1 \le (-1)^n \le 1$$
.

Donc
$$\frac{-1}{n^2} \leqslant \frac{(-1)^n}{n^2} \leqslant \frac{1}{n^2}$$
.

Donc
$$\frac{-1}{n^2} \leqslant \frac{(-1)^n}{n^2} \leqslant \frac{1}{n^2}$$
.
Ou encore $\frac{-1}{n^2} \leqslant v_n \leqslant \frac{1}{n^2}$.

Posons
$$u_n = \frac{-1}{n^2}$$
 et $w_n = \frac{1}{n^2}$.

On a donc $u_n \leqslant v_n \leqslant w_n$.

Ainsi,
$$\forall n \in \mathbb{N}, u_n \leqslant v_n \leqslant w_n$$
.

De plus,
$$\lim_{n \to +\infty} u_n = 0$$
 et $\lim_{n \to +\infty} w_n = 0$.

Donc d'après le théorème des gendarmes, $\lim_{n \to +\infty} v_n = 0$

III. Convergence d'une suite

Théorème

- Toute suite croissante et majorée converge.
- Toute suite décroissante et minorée converge.

Exemple

Soit (u_n) la suite définie sur $\mathbb N$ par $u_n=\frac{n-1}{n+1}$

- 1. Démontrer que $\forall n \in \mathbb{N}, u_n \leqslant 1$
- 2. Démontrer que la suite (u_n) est croissante.
- 3. En déduire que la suite (u_n) converge.
- 4. Déterminer $\lim_{n\to+\infty} u_n$.

Réponse

1. Soit $n \in \mathbb{N}$.

$$\begin{array}{l} u_n = \frac{n-1}{n+1} = \frac{n+1-2}{n+1} = \frac{n+1}{n+1} - \frac{2}{n+1} = 1 - \frac{2}{n+1} \leqslant 1 \\ \text{Donc } \forall n \in \mathbb{N}, u_n \leqslant 1 \end{array}$$

- $\begin{array}{l} 2. \ \ u_{n+1}-u_n=\frac{n+1-1}{n+1+1}-\frac{n-1}{n+1}=\frac{n}{n+2}-\frac{n-1}{n+1}=\frac{n(n+1)}{(n+1)(n+2)}-\frac{(n-1)(n+2)}{(n+1)(n+2)}=\frac{n^2+n}{(n+1)(n+2)}-\frac{n^2-n+2n-2}{(n+1)(n+2)}=\frac{n^2+n-2}{(n+1)(n+2)}=\frac{n^2+n-2}{(n+1)(n+$
- 3. La suite (u_n) est croissante et majorée donc converge.
- 4. $\lim_{\substack{n\to+\infty\\\text{Ainsi}}}\frac{2}{n+1}=0 \text{ donc } \lim_{\substack{n\to+\infty\\n\to+\infty}}1-\frac{2}{n+1}=1$

Propriété

Soit $q \in \mathbb{R}$.

- Si $q \leqslant -1$ alors (q^n) n'a pas de limite.
- Si -1 < q < 1 alors $\lim_{n \to +\infty} q^n = 0$.
- Si q = 1 alors $\lim_{n \to +\infty} q^n = 1$.
- Si q > 1 alors $\lim_{n \to +\infty} q^n = +\infty$.

Démonstration - à connaître

Soit $q \in \mathbb{R}$.

• Supposons que q > 1

Posons a = q - 1. On a alors q = 1 + a.

 $q^n = (1+a)^n \geqslant 1 + na$ d'après l'inégalité de Bernoulli.

Or $\lim_{n \to +\infty} 1 + na = +\infty$ donc $\lim_{n \to +\infty} q^n = +\infty$

• Supposons que q=1

$$\forall n \in \mathbb{N}, q^n = 1^n = 1$$

Donc $\lim_{n \to +\infty} q^n = 1$

• Supposons que 0 < q < 1

Posons $p = \frac{1}{q}$.

$$0 < q < 1 \implies \frac{1}{q} > 1 \implies p > 1$$

De plus $\frac{1}{q^n} = \left(\frac{1}{q}\right)^n = p^n$

Donc $\lim_{n \to +\infty} q^n = \lim_{n \to +\infty} \left(\frac{1}{p}\right)^n = \lim_{n \to +\infty} \frac{1}{p^n} = 0$

Supposons que -1 < q < 0

Posons p = -q.

$$-1 < q < 0 \implies 0 < -q < 1 \implies 0 < p < 1$$

On a $-p \leqslant q \leqslant p$ donc $(-p)^n \leqslant q^n \leqslant p^n$ et donc $-p^n \leqslant q^n \leqslant p^n$.

Or $\lim_{n\to +\infty} p^n = 0$ donc $\lim_{n\to +\infty} -p^n = 0$ Ainsi, d'après le théorème des gendarmes, $\lim_{n\to +\infty} q^n = 0$

• Supposons que q < -1

$$\lim_{n \to +\infty} q^{2n} = \lim_{n \to +\infty} (-1)^{2n} (\underline{-q})^{2n} = \lim_{n \to +\infty} (\underline{-q})^{2n} = +\infty$$

$$\lim_{n \to +\infty} q^{2n} = \lim_{n \to +\infty} (-1)^{2n} (\underline{-q})^{2n} = \lim_{n \to +\infty} (\underline{-q})^{2n} = +\infty$$

$$\lim_{n \to +\infty} q^{2n+1} = \lim_{n \to +\infty} (-1)^{2n+1} (\underline{-q})^{2n+1} = \lim_{n \to +\infty} -(\underline{-q})^{2n+1} = -\infty$$

Propriété

- La suite (e^n) diverge vers $+\infty$.
- La suite (e^{-n}) converge vers 0.

Démonstration

• Considérons la suite (e^n) .

Démontrons par récurrence que $\forall n \in \mathbb{N}^*, e^n \geqslant n$.

Appelon $\mathcal{P}(n): e^n \geqslant n$

- Initialisation :

$$e^1=e\geqslant 1$$
 car $e\approx 2,78$ Donc $\mathcal{P}(1)$ est vraie.

- Hérédité :

Supposons qu'il existe $k \in \mathbb{N}^*$ telle que $\mathcal{P}(k)$ soit vraie. montrons que $\mathcal{P}(k+1)$ est vraie.

$$e^{k+1} = e \times e^k \geqslant ek$$

Or
$$ek \ge k+1 \iff ek-k \ge 1 \iff k(e-1) \ge 1 \iff k \ge \frac{1}{e-1}$$

Or
$$e-1 \geqslant 1$$
 d'où $\frac{1}{e-1} \leqslant 1$

Ainsi
$$k \geqslant \frac{1}{e-1}$$

Ainsi
$$k \geqslant \frac{1}{e-1}$$

On a bien $e^{k+1} \geqslant ek \geqslant k+1$

Donc $\mathcal{P}(k+1)$ est vraie.

- Conclusion:

$$\forall n \in \mathbb{N}^*, \mathcal{P}(n)$$
 est vraie. $\forall n \in \mathbb{N}^*, e^n \geqslant n$

Or $\lim_{n\to +\infty} n = +\infty$ donc $\lim_{n\to +\infty} e^n = +\infty$. La suite (e^n) diverge vers $+\infty$.

• $\forall n \in \mathbb{N}, e^{-n} = \frac{1}{e^n}$.

Or
$$\lim e^n = +\infty$$

$$n \to +\infty$$

Or $\lim_{n \to +\infty} e^n = +\infty$ Donc $\lim_{n \to +\infty} e^{-n} = 0$ La suite (e^{-n}) converge vers 0.

On peut aussi écrire $\lim_{n\to -\infty}e^n=0$

IV. Algorithmes

Recherche de seuil

On considère une suite (u_n) (dé) croissante définie par sa valeur $u_0=k$ donnée et une relation de récurrence $f(u_n)$. Pour trouver à partir de quelle valeur $n\in\mathbb{N}$, on peut utiliser l'algorithme suivant implémenté en Python.

```
1 def seuil(nb):
2     u=k
3     n=0
4     while u <(>) nb:
5         u=f(u)
6         n = n + 1
7     return n
```

En prenant l'exemple précédent qui permet de trouver $\sqrt{5}$, déterminer la valeur de n afin que $u_n < 2, 237$, on utilisera l'algorithme suivant implémenté en Python :

```
1 def seuil(nb):
2     u=2
3     n=0
4     while u > nb:
5         u=(u+5/u)/2
6         n = n + 1
7     return n
8

Dans la console, on tape:

1 >>> seuil(2.237)
2 2
```

V. Approfondissement

1. Suites adjacentes

Définition

Deux suites (u_n) et (v_n) sont adjacentes si et seulement si :

- (u_n) est croissante
- (v_n) est décroissante
- $\bullet \quad \lim_{n \to +\infty} v_n u_n = 0$

Propriété

Deux suites adjacentes convergent vers la même limite $\ell \in \mathbb{R}$.

Démonstration

Soient (u_n) et (v_n) deux suites adjacentes telles que :

- (u_n) est croissante donc $\forall n \in \mathbb{N}, u_{n+1} u_n > 0$
- (v_n) est décroissante donc $\forall n \in \mathbb{N}, v_{n+1} v_n < 0$
- $\lim_{n \to +\infty} v_n u_n = 0$

Posons $\forall n \in \mathbb{N}, h_n = v_n - u_n$

$$\text{Soit } n \in \mathbb{N}. \ h_{n+1} - h_n = (v_{n+1} - u_{n+1}) - (v_n - u_n) = \underbrace{v_{n+1} - v_n}_{<0} + \underbrace{u_n - u_{n+1}}_{<0} < 0$$

Donc $\forall n \in \mathbb{N}, h_{n+1} - h_n < 0$

La suite (h_n) est donc décroissante et tend vers 0 donc est positive.

$$\forall n \in \mathbb{N}, h_n \geqslant 0 \iff \forall n \in \mathbb{N}, v_n - u_n \geqslant 0 \iff \forall n \in \mathbb{N}, v_n \geqslant u_n$$

On en déduit que :

- $\forall n \in \mathbb{N}, u_n \leqslant v_n \leqslant v_0$ car (v_n) est décroissante. (u_n) est donc croissante et majorée donc converge vers un réel ℓ_1 .
- $\forall n \in \mathbb{N}, u_0 < u_n \leq v_n \text{ car } (u_n) \text{ est croissante.}$ (v_n) est donc décroissante et minorée donc converge vers un réel ℓ_2 .

Or
$$\lim_{n\to +\infty} v_n - u_n = 0$$
 donc $\ell_2 - \ell_1 = 0.$ Ainsi $\ell_1 = \ell_2$

Exemple

Soient les suites définies sur \mathbb{N}^* par $u_n = 1 - \frac{1}{n}$ et $v_n = 1 + \frac{1}{n}$. Démontrer que les suites (u_n) et (v_n) sont adjacentes.

Réponse

$$u_{n+1}-u_n=\left(1-\tfrac{1}{n+1}\right)-\left(1-\tfrac{1}{n}\right)=\tfrac{1}{n}-\tfrac{1}{n+1}=\tfrac{n+1-n}{n(n+1)}=\tfrac{1}{n(n+1)}>0$$

Donc la suite (u_n) est croissante.

De même, la suite (v_n) est décroissante.

$$v_n - u_n = (1 + \frac{1}{n}) - (1 - \frac{1}{n}) = \frac{2}{n}$$

Or
$$\lim_{n\to+\infty}\frac{2}{n}=0$$
 donc $\lim_{n\to+\infty}v_n-u_n=0$.
Les suites (u_n) et (v_n) sont donc adjacentes.

Or $\lim_{n \to \infty} 1 - \frac{1}{n} = 1$ et les suites (u_n) et (v_n) convergent vers 1.

Relation de récurrence d'ordre 2 à coefficients constants

Définition

Une suite (u_n) est une suite récurrente d'ordre 2 à coefficients constants si et seulement si il existe deux réels a et b tels que $\forall n \in \mathbb{N}, u_{n+2} = au_{n+1} + bu_n$

Théorème - Raisonnement par récurrence

Soit $\mathcal{P}(n)$ une propriété dépendant d'un entier nature l n.

On suppose que :

- $\mathcal{P}(0)$ est vraie.
- Pour tout entier naturel k fixé, si $\mathcal{P}(k)$ et $\mathcal{P}(k+1)$ sont vraies alors $\mathcal{P}(k+2)$ est vraie.

Alors pour tout entier naturel n, $\mathcal{P}(n)$ est vraie.

Exemple

On considère la suite de Fibonacci (f_n) définie sur $\mathbb N$ par $\begin{cases} f_0=1\\ f_1=1\\ f_{n+2}=f_{n+1}+f_n \end{cases}$

- 1. Calculer f_2 , f_3 et f_4 .
- 2. Démontrer par récurrence que $\forall n \in \mathbb{N}^*, f_{n+1} > f_n > 0.$
- 3. En déduire le sens de variation de la suite (f_n) . On admettra par la suite que $\lim_{n\to+\infty} f_n = +\infty$
- 4. Soit $\varphi = \frac{1+\sqrt{5}}{2}$ et $\varphi' = \frac{1-\sqrt{5}}{2} = -\frac{1}{\varphi}$. Donner la valeur exacte de φ^2 et φ'^2 .
- 5. Démontrer par récurrence que $f_n = \frac{1}{\sqrt{5}}(\varphi^{n+1} \varphi'^{n+1})$.
- 6. On considère la suite (v_n) définie sur $\mathbb N$ par $v_n=\frac{f_{n+1}}{f_n}$
 - (a) Démontrer que $\forall n \in \mathbb{N}, v_{n+1}-v_n = \frac{(-1)^{n+1}}{f_n f_{n+2}}.$
 - (b) On pose $\forall n \in \mathbb{N}, p_n = v_{2n+1}$ et $q_n = v_{2n}$ Démontrer que les suites (p_n) et (q_n) sont adjacentes.
 - (c) En déduire que la suite (v_n) converge.
 - (d) Démontrer que la suite (v_n) vérifie $\forall n \in \mathbb{N}, v_{n+1} = 1 + \frac{1}{v_n}.$
 - (e) Déterminer la limite de la suite (v_n) .

Réponse

1.
$$f_2 = f_1 + f_0 = 1 + 1 = 2$$

 $f_3 = f_2 + f_1 = 2 + 1 = 3$
 $f_4 = f_3 + f_2 = 3 + 2 = 5$

- 2. Soit $\mathcal{P}(n): f_{n+1} \geqslant f_n > 0$.
 - Initialisation : $f_2=2 \text{ et } f_1=1 \text{ donc } f_2>f_1>0$ $\mathcal{P}(1)$ est donc vraie.
 - Hérédité : Supposons qu'il existe $k \in \mathbb{N}$ tel que $\mathcal{P}(k)$ et $\mathcal{P}(k+1)$ soient vraies. C'est à dire $f_{k+1} > f_k > 0$ et $f_{k+2} > f_{k+1} > 0$.

Ou encore $f_{k+2} > f_{k+1} > f_k > 0$ $f_{k+3} = f_{k+2} + f_{k+1} > f_{k+2} > 0$ Donc $\mathcal{P}(k+2)$ est donc vraie.

- $\begin{aligned} \bullet & \text{ Conclusion :} \\ & \forall n \in \mathbb{N}, \mathcal{P}(n) \text{ est vraie.} \\ & \forall n \in \mathbb{N}, f_{n+1} > f_n > 0. \end{aligned}$
- 3. $\forall n \in \mathbb{N}, f_{n+1} > f_n \text{ donc } (f_n) \text{ est strictement croissante.}$

4.
$$\varphi^2 = \left(\frac{1+\sqrt{5}}{2}\right)^2 = \frac{1+2\sqrt{5}+5}{4} = \frac{6+2\sqrt{5}}{4} = \frac{3+\sqrt{5}}{2}$$

$$\varphi'^2 = \left(\frac{1-\sqrt{5}}{2}\right)^2 = \frac{1-2\sqrt{5}+5}{4} = \frac{6-2\sqrt{5}}{4} = \frac{3-\sqrt{5}}{2}$$

- 5. Soit $\mathcal{P}(n): f_n = \frac{1}{\sqrt{5}}(\varphi^{n+1} \varphi'^{n+1})$
 - Initialisation : $\frac{1}{\sqrt{5}}(\varphi^1-\varphi'^1)=\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}-\frac{1-\sqrt{5}}{2}\right)=1=f_0\ \frac{1}{\sqrt{5}}(\varphi^2-\varphi'^2)=\frac{1}{\sqrt{5}}(\varphi-\varphi')(\varphi+\varphi')=1\times 1=1=f_1$ $\mathcal{P}(0) \text{ est donc vraie.}$
 - Hérédité :

Supposons qu'il existe $k \in \mathbb{N}$ tel que $\mathcal{P}(k)$ et $\mathcal{P}(k+1)$ soient vraies. C'est à dire $f_k = \frac{1}{\sqrt{5}}(\varphi^{k+1} - \varphi'^{k+1})$ et $f_{k+1} = \frac{1}{\sqrt{5}}(\varphi^{k+2} - \varphi'^{k+2})$. $f_{k+2} = f_{k+1} + f_k = \frac{1}{\sqrt{5}}(\varphi^{k+2} - \varphi'^{k+2}) + \frac{1}{\sqrt{5}}(\varphi^{k+1} - \varphi'^{k+1})$ $f_{k+2} = \frac{1}{\sqrt{5}}(\varphi^{k+2} - \varphi'^{k+2} + \varphi^{k+1} - \varphi'^{k+1}) = \frac{1}{\sqrt{5}}(\varphi^{k+2} + \varphi^{k+1} - \varphi'^{k+2} - \varphi'^{k+1})$ Or $\varphi^{k+2} + \varphi^{k+1} = \varphi^{k+1}(\varphi + 1) = \varphi^{k+1}(\frac{1+\sqrt{5}}{2} + 1) = \varphi^{k+1}(\frac{3+\sqrt{5}}{2}) = \varphi^{k+1}\varphi^2 = \varphi^{k+3}$ $\varphi'^{k+2} + \varphi'^{k+1} = \varphi'^{k+1}(\varphi' + 1) = \varphi'^{k+1}(\frac{1-\sqrt{5}}{2} + 1) = \varphi'^{k+1}(\frac{3-\sqrt{5}}{2}) = \varphi'^{k+1}\varphi'^2 = \varphi'^{k+3}$ Ainsi $f_{k+2} = \frac{1}{\sqrt{5}}(\varphi^{k+3} - \varphi'^{k+3})$ Donc $\mathcal{P}(k+2)$ est donc vraie.

- Conclusion : $\forall n \in \mathbb{N}, \mathcal{P}(n) \text{ est vraie.}$ $\forall n \in \mathbb{N}, f_n = \frac{1}{\sqrt{5}} (\varphi^{n+1} \varphi'^{n+1}).$
- 6. On considère la suite (v_n) définie sur $\mathbb N$ par $v_n=\frac{f_{n+1}}{f_n}$
 - $\begin{array}{c} \text{(a) Soit } n \in \mathbb{N}. \\ v_{n+1} v_n = \frac{f_{n+2}}{f_{n+1}} \frac{f_{n+1}}{f_n} = \frac{f_{n+2}f_n}{f_nf_{n+1}} \frac{f_{n+1}^2}{f_nf_{n+1}} = \frac{f_{n+2}f_n f_{n+1}^2}{f_nf_{n+1}}. \end{array}$

Exemple - suite

Réponse - suite

$$\begin{array}{l} \text{Or } f_{n+2}f_n - f_{n+1}^2 = \frac{1}{\sqrt{5}}(\varphi^{n+3} - \varphi'^{n+3}) \times \frac{1}{\sqrt{5}}(\varphi^{n+1} - \varphi'^{n+1}) - \left(\frac{1}{\sqrt{5}}(\varphi^{n+2} - \varphi'^{n+2})\right)^2 \\ f_{n+2}f_n - f_{n+1}^2 = \frac{1}{5}(\varphi^{2n+4} - \varphi^{n+3}\varphi'^{n+1} - \varphi'^{n+3}\varphi^{n+1} + \varphi'^{2n+4}) - \frac{1}{5}(\varphi^{2n+4} - 2\varphi^{n+2}\varphi'^{n+2} + \varphi'^{2n+4}) \\ f_{n+2}f_n - f_{n+1}^2 = \frac{1}{5}\left(-\varphi^{n+3}\left(-\frac{1}{\varphi}\right)^{n+1} - \varphi^{n+1}\left(-\frac{1}{\varphi}\right)^{n+3} + 2\varphi^{n+2}\left(-\frac{1}{\varphi}\right)^{n+2}\right) \\ f_{n+2}f_n - f_{n+1}^2 = \frac{1}{5}\left((-1)^{n+2}\varphi^2 + (-1)^{n+4}\frac{1}{\varphi^2} + 2(-1)^{n+2}\right) \\ f_{n+2}f_n - f_{n+1}^2 = \frac{(-1)^{n+1}}{5}\left(-\varphi^2 - (-\varphi')^2 - 2\right) = \frac{(-1)^{n+1}}{5}\left(-\frac{3+\sqrt{5}}{2} - \frac{3-\sqrt{5}}{2} - 2\right) \\ f_{n+2}f_n - f_{n+1}^2 = \frac{(-1)^{n+1}}{5} \times 5 = (-1)^{n+1} \\ \text{Ainsi } v_{n+1} - v_n = \frac{(-1)^{n+1}}{f_n f_{n+2}} \end{array}$$

(b) Soit $n \in \mathbb{N}$

$$\begin{aligned} & p_{n+1} - p_n = v_{2n+3} - v_{2n+1} = v_{2n+3} - v_{2n+2} + v_{2n+2} - v_{2n+1} = \frac{(-1)^{2n+3}}{f_{2n+2}f_{2n+4}} + \frac{(-1)^{2n+1}}{f_{2n}f_{2n+2}} \\ & p_{n+1} - p_n = \frac{-1}{f_{2n+2}f_{2n+4}} + \frac{-1}{f_{2n}f_{2n+2}} = -\left(\frac{1}{f_{2n+2}f_{2n+4}} + \frac{1}{f_{2n}f_{2n+2}}\right) < 0 \text{ car } \forall n \in \mathbb{N}, f_n > 0 \\ & \text{Donc } (p_n) \text{ est décroissante.} \end{aligned}$$

De même (q_n) est croissante

Enfin
$$\lim_{n \to +\infty} p_n - q_n = \lim_{n \to +\infty} v_{2n+1} - v_{2n} = \lim_{n \to +\infty} \frac{(-1)^{2n+1}}{f_{2n}f_{2n+2}} = \lim_{n \to +\infty} \frac{-1}{f_{2n}f_{2n+2}} = 0 \text{ car } \lim_{n \to +\infty} f_n = \lim_{n \to +\infty} \frac{(-1)^{2n+1}}{f_{2n}f_{2n+2}} = \lim_{n \to +\infty} \frac{-1}{f_{2n}f_{2n+2}} = 0 \text{ car } \lim_{n \to +\infty} f_n = \lim_{n \to +\infty} \frac{(-1)^{2n+1}}{f_{2n}f_{2n+2}} = \lim_{n \to +\infty} \frac{(-1)^{2n+1}}{f_{2n}f_{2n+2}} = 0 \text{ car } \lim_{n \to +\infty} f_n = \lim_{n \to +\infty} \frac{(-1)^{2n+1}}{f_{2n}f_{2n+2}} = \lim_{n \to +\infty} \frac{(-1)^{2n+1}}{f_{2n}f_{2n+2}} = 0 \text{ car } \lim_{n \to +\infty} f_n = \lim_{n \to +\infty} \frac{(-1)^{2n+1}}{f_{2n}f_{2n+2}} = \lim_{n \to +\infty} \frac{(-1)^{2n+1}}{f_{2n}f_{2n+2}} = 0 \text{ car } \lim_{n \to +\infty} f_n = \lim_{n \to +\infty} \frac{(-1)^{2n+1}}{f_{2n}f_{2n+2}} = \lim_{n \to +\infty} \frac{(-1)^{2n+1}}{f_{2n}f_{2n+2}} = 0 \text{ car } \lim_{n \to +\infty} f_n = \lim_{n \to +\infty} \frac{(-1)^{2n+1}}{f_{2n}f_{2n+2}} = \lim_{n \to +\infty} \frac{(-1)^{2n+1}}{f_{2n}f_{2n+2}} = 0 \text{ car } \lim_{n \to +\infty} f_n = \lim_{n \to +\infty} \frac{(-1)^{2n+1}}{f_{2n}f_{2n+2}} = \lim_{n \to +\infty} \frac{(-1)^{2n+1}}{f_{2n}f_{2n+2}} = 0 \text{ car } \lim_{n \to +\infty} f_n = \lim_{n \to +\infty} \frac{(-1)^{2n+1}}{f_{2n}f_{2n+2}} = 0 \text{ car } \lim_{n \to +\infty} \frac{(-1)^{2n+1}}{f_{2n}f_{2n+2}} = 0 \text{ car } \lim_{n \to +\infty} \frac{(-1)^{2n+1}}{f_{2n}f_{2n+2}} = 0 \text{ car } \lim_{n \to +\infty} \frac{(-1)^{2n+1}}{f_{2n}f_{2n+2}} = 0 \text{ car } \lim_{n \to +\infty} \frac{(-1)^{2n+1}}{f_{2n}f_{2n+2}} = 0 \text{ car } \lim_{n \to +\infty} \frac{(-1)^{2n+1}}{f_{2n}f_{2n+2}} = 0 \text{ car } \lim_{n \to +\infty} \frac{(-1)^{2n+1}}{f_{2n}f_{2n+2}} = 0 \text{ car } \lim_{n \to +\infty} \frac{(-1)^{2n+1}}{f_{2n}f_{2n+2}} = 0 \text{ car } \lim_{n \to +\infty} \frac{(-1)^{2n+1}}{f_{2n}f_{2n+2}} = 0 \text{ car } \lim_{n \to +\infty} \frac{(-1)^{2n+1}}{f_{2n}f_{2n+2}} = 0 \text{ car } \lim_{n \to +\infty} \frac{(-1)^{2n+1}}{f_{2n}f_{2n+2}} = 0 \text{ car } \lim_{n \to +\infty} \frac{(-1)^{2n+1}}{f_{2n}f_{2n+2}} = 0 \text{ car } \lim_{n \to +\infty} \frac{(-1)^{2n+1}}{f_{2n}f_{2n+2}} = 0 \text{ car } \lim_{n \to +\infty} \frac{(-1)^{2n+1}}{f_{2n}f_{2n+2}} = 0 \text{ car } \lim_{n \to +\infty} \frac{(-1)^{2n+1}}{f_{2n}f_{2n+2}} = 0 \text{ car } \lim_{n \to +\infty} \frac{(-1)^{2n+1}}{f_{2n}f_{2n+2}} = 0 \text{ car } \lim_{n \to +\infty} \frac{(-1)^{2n+1}}{f_{2n}f_{2n+2}} = 0 \text{ car } \lim_{n \to +\infty} \frac{(-1)^{2n+1}}{f_{2n}f_{2n+2}} = 0 \text{ car } \lim_{n \to +\infty} \frac{(-1)^{2n+1}}{f_{2n}f_{2n+2}} = 0 \text{ car } \lim_{n \to +\infty} \frac{(-1)^{2n+1}}{f_{$$

Ainsi les suites (p_n) et (q_n) sont adjacentes.

(c) Les suites (p_n) et (q_n) sont adjacentes donc convergent vers la même limite ℓ .

On a donc
$$\lim_{n\to +\infty} v_{2n} = \lim_{n\to +\infty} v_{2n+1} = \ell$$

Donc $\lim_{n\to +\infty} v_n = \ell$

(d) Soit $n \in \mathbb{N}$.

$$\begin{split} v_{n+1} &= \frac{f_{n+2}}{f_{n+1}} = \frac{f_{n+1} + f_n}{f_{n+1}} = \frac{f_{n+1}}{f_{n+1}} + \frac{f_n}{f_{n+1}} 1 + \frac{1}{\frac{f_{n+1}}{f_n}} = 1 + \frac{1}{v_n} \\ \text{Ainsi } \forall n \in \mathbb{N}, v_{n+1} = 1 + \frac{1}{-} \end{split}$$

Ainsi
$$\forall n \in \mathbb{N}, v_{n+1} = 1 + \frac{1}{v_n}$$

(e) Soit $\ell = \lim_{n \to +\infty} v_n$.

On a vu que
$$\forall n \in \mathbb{N}, v_{n+1} = 1 + \frac{1}{v_n}$$

Donc par passage à la limite, on a :

$$\ell = 1 + \frac{1}{\ell}$$

Soit encore
$$\ell^2 = \ell + 1$$
 d'où $\ell^2 - \ell - 1 = 0$

 ℓ est donc la solution positive de l'équation $x^2-x-1=0$ car $\forall n\in\mathbb{N}, v_n>0$ car $\forall n\in\mathbb{N}, f_n>0$ $\Delta = (-1)^2 - 4 \times 1 \times (-1) = 5 > 0$

L'équation $x^2 - x - 1 = 0$ admet donc deux solutions :

$$x_1 = \frac{-(-1)-\sqrt{5}}{2\times 1} = \frac{1-\sqrt{5}}{2} = \varphi' < 0$$

$$x_2 = \frac{-(-1)+\sqrt{5}}{2\times 1} = \frac{1+\sqrt{5}}{2} = \varphi' - > 0$$

Donc
$$\ell = \frac{1+\sqrt{5}}{2}$$

$$\lim_{n \to +\infty} v_n = \frac{1+\sqrt{5}}{2}$$

Le nombre $\varphi = \frac{1+\sqrt{5}}{2}$ est appelé nombre d'or.

On peut donc en trouver une valeur approchée par les termes de la suite (v_n) .

Etude de la convergence de la méthode de Héron

Exemple

Le but de la méthode du Héron est de déterminer une valeur approchée de \sqrt{a} avec $a \in \mathbb{R}_{+}^{*}$.

Soit
$$(x_n)$$
 la suite définie par
$$\begin{cases} x_0 = \lceil \sqrt{a} \rceil \\ \forall n \in \mathbb{N}, x_{n+1} = \frac{x_n + \frac{a}{x_n}}{2} \end{cases}$$

- 1. Démontrer que $\forall n \in \mathbb{N}^*, x_n \geqslant \sqrt{a}$. On pourra donner une expression de $x_{n+1}^2 a$ avec $n \in \mathbb{N}$.
- 2. Démontrer que la suite (x_n) est croissante à partir du second terme.
- 3. En déduire la convergence de la suite (x_n) .

Réponse

1. Soit
$$n \in \mathbb{N}$$
.

$$x_{n+1}^2 - a = \left(\frac{x_n + \frac{a}{x_n}}{2}\right)^2 - a = \frac{x_n^2 + 2x_n \frac{a}{x_n} + \left(\frac{a}{x_n}\right)^2}{4} - a = \frac{x_n^2 + 2a + \frac{a^2}{x_n^2}}{4} - \frac{4a}{4} = \frac{x_n^2 - 2a + \frac{a^2}{x_n^2}}{4} = \frac{x_n^2 - 2x_n \frac{a}{x_n} + \frac{a^2}{x_n^2}}{4}$$

$$x_{n+1}^2 - a = \left(\frac{x_n - \frac{a}{x_n}}{2}\right)^2 \geqslant 0$$

Aiinsi $\forall n \in \mathbb{N}, x_{n+1}^2 - a \geqslant 0$ ou encore $x_{n+1}^2 \geqslant a$ soit $x_{n+1} \geqslant \sqrt{a}$ $\forall n \in \mathbb{N}^*, x_n \geqslant \sqrt[n]{a}$

2. Soit
$$n \in \mathbb{N}^*$$

2. Soit
$$n \in \mathbb{N}^*$$
.
$$x_{n+1} - x_n = \frac{x_n + \frac{a}{x_n}}{2} - x_n = \frac{x_n + \frac{a}{x_n}}{2} - \frac{2x_n}{2} = \frac{-x_n + \frac{a}{x_n}}{2} = \frac{a - x_n^2}{2x_n}$$

Or
$$\forall n \in \mathbb{N}, x_n \geqslant \sqrt{a} > 0$$
.

Donc
$$\forall n \in \mathbb{N}, x_n^2 \geqslant a$$
 ou encore $a - x_n^2 \leqslant 0$

Ainsi
$$x_{n+1} - x_n \leqslant 0$$

Donc la suite (x_n) est décroissante.

3. La suite (x_n) est décroissante et minorée donc converge vers un réel ℓ strictement positif qui

$$\ell = \frac{\ell + \frac{a}{\ell}}{2} \implies 2\ell = \ell + \frac{a}{\ell} \implies 2\ell^2 = \ell^2 + a \implies \ell^2 = a \implies \ell = \sqrt{a}$$

Donc la suite (x_n) converge vers \sqrt{a} .