

Table des matières

Chapitre VI - Manipulation de vecteurs, droites et plans dans l'espace				
I.		Vecteurs de l'espace	3	
II.		Droites de l'espace	6	
	1.	Vecteurs colinéaires dans l'espace	6	
	2.	Caractérisation d'une droite de l'espace	8	
III		Plan de l'espace	8	
	1.	Caractérisation d'un plan de l'espace	8	
	2.	Vecteurs coplanaires	8	
\mathbf{IV}		Positions relatives	10	
	1.	Position relative de deux droites de l'espace	10	
	2.	Position relative d'une droite et d'un plan	10	
	3.	Position relative de deux plans	11	
v.		Base et repères de l'espace	12	
	1.	Généralités	12	
	2.	Représentation paramétrique d'une droite	18	
VI		Approfondissement	19	
	1.	Barycentre d'une famille d'un système pondéré de points	19	
	2.	Fonction vectorielle de Leibniz	23	

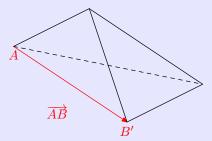
I. Vecteurs de l'espace

On étend à l'espace la notion de vecteur et certaines de ses propriétés.

Définition

A tout couple (A, B) de points de l'espace, on associe le vecteur \overrightarrow{AB} , où \overrightarrow{AB} est le vecteur associé à la translation qui transforme A en B.

Un vecteur de l'espace \overrightarrow{AB} est défini par sa direction (la droite (AB)), son sens (de A vers B) et sa norme (la longueur AB, notée $\|\overrightarrow{AB}\|$).



Remarque

La translation qui transforme un point A en lui-même est la translation de vecteur \overrightarrow{AA} .

Le vecteur \overrightarrow{AA} est appelé vecteur nul et est noté $\overrightarrow{0}$.

On a donc $\|\overrightarrow{0}\| = 0$.

Propriété

Deux vecteurs sont égaux s'ils ont même direction, même sens et même norme.

Remarque

Le vecteur nul n'a ni direction ni sens.

Définition

Si deux vecteurs sont égaux alors on dit que l'un est un représentant de l'autre.

Définition

Soient \overrightarrow{u} un vecteur de l'espace et A et B deux points de l'espace.

On appelle opposé du vecteur \vec{u} le vecteur, noté $-\vec{u}$, de même direction, de même norme mais de sens opposé.

 $\overrightarrow{Si} \overrightarrow{u} = \overrightarrow{AB} \text{ alors } -\overrightarrow{u} = \overrightarrow{BA}$

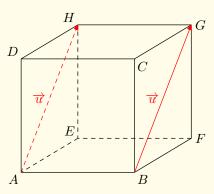
Propriété

Soient A, B, C et D quatre points de l'espace.

Les vecteurs \overrightarrow{AB} et \overrightarrow{DC} sont égaux si et seulement si le quadrilatère ABCD est un parallélogramme (éventuellement aplati).

Exemple

Le polyèdre ABCDEFGH est un cube. Démontrer que les vecteurs \overrightarrow{AH} et \overrightarrow{BG} sont égaux.



Réponse

Le polyèdre ABCDEFGH est un cube donc (AB)//(HG) et AB = HG.

Les vecteurs \overrightarrow{AB} et \overrightarrow{HG} ont donc même direction et même norme. De plus, ils ont le même sens : vers la droite. Donc $\overrightarrow{AB} = \overrightarrow{HG}$. Le quadrilatère ABGH est donc un parallélogramme.

Ainsi ABGH est un parallélogramme donc les vecteurs \overrightarrow{AH} et \overrightarrow{BG} sont égaux.

Si on pose $\vec{u} = \overrightarrow{AB}$, Les vecteurs \overrightarrow{AH} et \overrightarrow{BG} sont des représentants du vecteur \vec{u} .

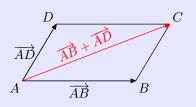
On peut donc noter $\vec{u} = \overrightarrow{AH} = \overrightarrow{BG}$.

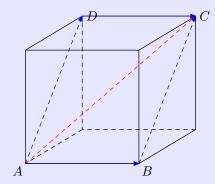
Définition

Soit ABCD un parallélogramme.

La somme des vecteurs \overrightarrow{AB} et \overrightarrow{AD} est le vecteur \overrightarrow{AC} .

$$\overrightarrow{AB} + \overrightarrow{AD} = \overrightarrow{AC}$$



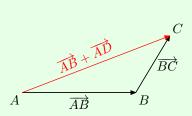


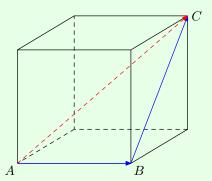
Relation de Chasles

Soient A, B et C trois points de l'espace.

La somme des vecteurs \overrightarrow{AB} et \overrightarrow{BC} est le vecteur \overrightarrow{AC} .

$$\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$$





Propriété

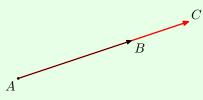
Soient A et B deux points de l'espace. Soit $\lambda \in \mathbb{R}^*$.

Le produit de λ par le vecteur \overrightarrow{AB} est le vecteur noté $\lambda \overrightarrow{AB}$.

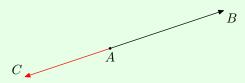
 \overrightarrow{AB} et \overrightarrow{AB} ont la même direction.

 $\|\lambda \overrightarrow{AB}\| = |\lambda| \|\overrightarrow{AB}\|.$

• Si $\lambda > 0$ alors \overrightarrow{AB} et $\lambda \overrightarrow{AB}$ sont de même sens.



• Si $\lambda < 0$ alors \overrightarrow{AB} et $\lambda \overrightarrow{AB}$ sont de sens contraires.



Propriété

Soient \overrightarrow{u} et \overrightarrow{v} deux vecteurs de l'espace. Soient λ et μ deux nombres réels.

•
$$\lambda (\overrightarrow{u} + \overrightarrow{v}) = \lambda \overrightarrow{u} + \lambda \overrightarrow{v}$$

$$\bullet \ (\lambda + \mu) \overrightarrow{u} = \lambda \overrightarrow{u} + \mu \overrightarrow{u}$$

$$\bullet \ \ \lambda \left(\mu \, \overrightarrow{u} \right) = \left(\lambda \mu \right) \overrightarrow{u}$$

Exemple

Exprimer $3\overrightarrow{AB} + 5\overrightarrow{BC}$ en fonction de \overrightarrow{OA} , \overrightarrow{OB} et \overrightarrow{OC} .

Réponse

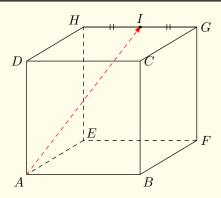
$$3\overrightarrow{AB} + 5\overrightarrow{BC} = 3\left(\overrightarrow{AO} + \overrightarrow{OB}\right) + 5\left(\overrightarrow{BO} + \overrightarrow{OC}\right) = 3\overrightarrow{AO} + 3\overrightarrow{OB} + 5\overrightarrow{BO} + 5\overrightarrow{BC} = 3\left(-\overrightarrow{OA}\right) + 3\overrightarrow{OB} + 5\left(-\overrightarrow{OB}\right) + 5\overrightarrow{OC}$$

$$= -3\overrightarrow{OA} + 3\overrightarrow{OB} + \left(-5\overrightarrow{OB}\right) + 5\overrightarrow{OC} = -3\overrightarrow{OA} + (3-5)\overrightarrow{OB} + 5\overrightarrow{OC} = -3\overrightarrow{OA} - 2\overrightarrow{OB} + 5\overrightarrow{OC}$$

Définition

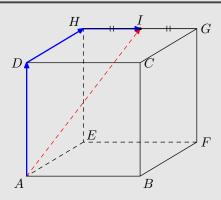
Soit $n \in \mathbb{N}^*$. Soient $\lambda_1, \lambda_2, ..., \lambda_n$ des nombres réels. Soient $\overrightarrow{u_1}, \overrightarrow{u_2}, ..., \overrightarrow{u_n}$ des vecteurs de l'espace. Tout vecteur de la forme $\overrightarrow{v} = \lambda_1 \overrightarrow{u_1} + \lambda_2 \overrightarrow{u_2} + ... + \lambda_n \overrightarrow{u_n}$ est appelé combinaison linéaire des vecteurs $\overrightarrow{u_1}, \overrightarrow{u_2}, ..., \overrightarrow{u_n}$.

Exemple



Donner une combinaison linéaire du vecteur \overrightarrow{AI} en fonction de \overrightarrow{AB} , \overrightarrow{AD} et \overrightarrow{AE} .

Réponse



$$\overrightarrow{AI} = \overrightarrow{AD} + \overrightarrow{DH} + \overrightarrow{HI} = \overrightarrow{AD} + \overrightarrow{AE} + \frac{1}{2}\overrightarrow{HG} = \overrightarrow{AD} + \overrightarrow{AE} + \frac{1}{2}\overrightarrow{AB}$$

II. Droites de l'espace

1. Vecteurs colinéaires dans l'espace

Définition

Deux vecteurs de l'espace \vec{u} et \vec{v} sont colinéaires si et seulement si il existe $\lambda \in \mathbb{R}$ tel que $\vec{v} = \lambda \vec{u}$.

Remarque

Le vecteur nul est donc colinéaire à n'importe quel vecteur de l'espace puisque pour tout vecteur \overrightarrow{u} de l'espace, on a $\overrightarrow{0} = 0\overrightarrow{u}$

Propriété

Deux vecteurs non nuls sont colinéaires si et seulement si ils ont la même direction.

Démonstration

Soient \overrightarrow{u} et \overrightarrow{v} deux vecteurs non nuls de même direction.

Si les vecteurs sont de même sens alors on pose $\lambda = \frac{\|\vec{u}\|}{\|\vec{v}\|}$ sinon on pose $\lambda = -\frac{\|\vec{u}\|}{\|\vec{v}\|}$.

On a alors $\vec{u} = \lambda \vec{v}$.

Donc les vecteurs \vec{u} et \vec{v} sont colinéaires.

Soient \vec{u} et \vec{v} deux vecteurs non nuls colinéaires.

 $\exists \lambda \in \mathbb{R}^*, \overrightarrow{v} = \lambda \overrightarrow{u}$

Les vecteurs \overrightarrow{v} et $\lambda \overrightarrow{u}$ ont la même direction puisqu'ils sont égaux.

Or les vecteurs $\lambda \vec{u}$ et \vec{u} ont la même direction.

Donc les vecteurs \vec{v} et \vec{u} ont la même direction.

Propriété

Trois points de l'espace A, B et C sont alignés si et seulement si les vecteurs \overrightarrow{AB} et \overrightarrow{AC} sont colinéaires.

Démonstration

Soient A, B et C trois points de l'espace alignés.

Les vecteurs \overrightarrow{AB} et \overrightarrow{AC} ont donc la même direction.

Donc les vecteurs \overrightarrow{AB} et \overrightarrow{AC} sont colinéaires.

Soient A, B et C trois points de l'espace tels que les vecteurs \overrightarrow{AB} et \overrightarrow{AC} soient colinéaires.

Les vecteurs \overrightarrow{AB} et \overrightarrow{AC} ont donc la même direction.

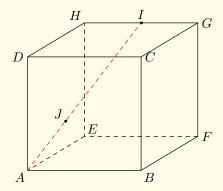
Ainsi les droites (AB) et (AC) sont parallèles. Or le point A appartient à la droite (AB) et à la droite (AC).

Donc les droites (AB) et (AC) sont confondues.

Ainsi les points A, B et C sont alignés.

Exemple

Soit *ABCDEFGH* un cube.



7

Soit I le milieu du segment [GH]. Soit J le point de l'espace tel que $\overrightarrow{AJ} = \frac{1}{6}\overrightarrow{AB} + \frac{1}{3}\overrightarrow{AE} + \frac{1}{3}\overrightarrow{AD}$. Démontrer que les points A, I et J sont alignés.

Réponse

$$\overrightarrow{AI} = \overrightarrow{AD} + \overrightarrow{DH} + \overrightarrow{HI} = \overrightarrow{AD} + \overrightarrow{AE} + \frac{1}{2}\overrightarrow{HG} = \overrightarrow{AD} + \overrightarrow{AE} + \frac{1}{2}\overrightarrow{AB} = \frac{1}{2}\overrightarrow{AB} + \overrightarrow{AE} + \overrightarrow{AD}$$

$$\overrightarrow{AJ} = \frac{1}{6}\overrightarrow{AB} + \frac{1}{3}\overrightarrow{AE} + \frac{1}{3}\overrightarrow{AD} = \frac{1}{3}\left(\frac{1}{2}\overrightarrow{AB} + \overrightarrow{AE} + \overrightarrow{AD}\right) = \frac{1}{3}\overrightarrow{AI}$$

Donc les vecteurs \overrightarrow{AI} et \overrightarrow{AJ} sont colinéaires.

Les points A, I et J sont donc alignés.

2. Caractérisation d'une droite de l'espace

Définition

Soient A et B deux points de l'espace.

La droite (AB) est l'ensemble des points M de l'espace tels que $\overrightarrow{AM} = \lambda \overrightarrow{AB}$ où $\lambda \in \mathbb{R}$.

Le vecteur \overrightarrow{AB} est alors un vecteur directeur de la droite (AB).

$$(AB) = \left\{ M | \exists \lambda \in \mathbb{R}, \overrightarrow{AM} = \lambda \overrightarrow{AB} \right\}$$

Remarque

On peut donc définir une droite par un point A et un vecteur directeur \vec{u} . On peut alors la noter $d(A, \vec{u})$. Ainsi $M \in d(A, \vec{u}) \iff \exists \lambda \in \mathbb{R}, \overrightarrow{AM} = \lambda \vec{u}$

Ou encore $d(A, \overrightarrow{u}) = \{M | \exists \lambda \in \mathbb{R}, \overrightarrow{AM} = \lambda \overrightarrow{u}\}\$

III. Plan de l'espace

1. Caractérisation d'un plan de l'espace

Définition

Soient A, B et C trois points de l'espace non alignés.

Le plan (ABC) est l'ensemble des points M tels que $\overrightarrow{AM} = \lambda \overrightarrow{AB} + \mu \overrightarrow{AC}$ où $\lambda \in \mathbb{R}$ et $\mu \in \mathbb{R}$.

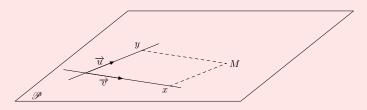
Les vecteurs \overrightarrow{AB} et \overrightarrow{AC} sont appelés vecteurs directeurs du plan (ABC).

$$(ABC) = \left\{ M | \exists \lambda \in \mathbb{R}, \exists \mu \in \mathbb{R}, \overrightarrow{AM} = \lambda \overrightarrow{AB} + \mu \overrightarrow{AC} \right\}$$

Remarque

On peut donc définir un plan par un point A et deux vecteurs directeurs \vec{u} et \vec{v} non colinéaires. On peut alors la noter $\mathcal{P}(A, \vec{u}, \vec{v})$.

Ainsi $M \in \mathcal{P}(A, \overrightarrow{u}, \overrightarrow{v}) \iff \exists x \in \mathbb{R}, \exists y \in \mathbb{R}, \overrightarrow{AM} = x\overrightarrow{u} + y\overrightarrow{v}$ Ou encore $\mathcal{P}(A, \overrightarrow{u}, \overrightarrow{v}) = \left\{ M | \exists x \in \mathbb{R}, \exists y \in \mathbb{R}, \overrightarrow{AM} = x\overrightarrow{u} + y\overrightarrow{v} \right\}$



8

2. Vecteurs coplanaires

Définition

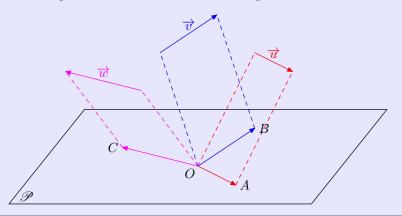
Quatre points A, B, C et D qui sont dans le même plan sont dit coplanaires.

Définition

Soient \vec{u} , \vec{v} et \vec{w} trois vecteurs de l'espace.

Soient \overrightarrow{O} , \overrightarrow{A} , \overrightarrow{B} et \overrightarrow{C} quatre points de l'espace tels que $\overrightarrow{OA} = \overrightarrow{u}$, $\overrightarrow{OB} = \overrightarrow{v}$ et $\overrightarrow{OC} = \overrightarrow{w}$.

Les vecteurs \vec{u} , \vec{v} et \vec{w} sont coplanaires si et seulement si les points O, A, B et C sont coplanaires.



Propriété

Soient \vec{u} , \vec{v} et \vec{w} trois vecteurs de l'espace.

Les vecteurs \vec{u} , \vec{v} et \vec{w} sont coplanaires si et seulement si le vecteur \vec{w} est une combinaison linéaire des vecteurs \vec{u} et \vec{v} .

Autrement dit:

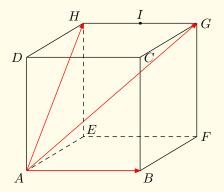
Les vecteurs \vec{u} , \vec{v} et \vec{w} sont coplanaires si et seulement si il existe $\lambda \in \mathbb{R}$ et $\mu \in \mathbb{R}$ tels que $\vec{w} = \lambda \vec{u} + \mu \vec{v}$.

Remarque

Le vecteur nul est coplanaire avec n'importe quel couple de vecteurs \vec{u} et \vec{v} car $\vec{0} = 0\vec{u} + 0\vec{v}$

Exemple

Soit ABCDEFGH un cube. Soit I le milieu du segment [HG].



Démontrer que les vecteurs \overrightarrow{AB} , \overrightarrow{AH} et \overrightarrow{AI} sont coplanaires.

Réponse

$$\overrightarrow{AI} = \overrightarrow{AH} + \overrightarrow{HI} = \overrightarrow{AH} + \frac{1}{2}\overrightarrow{HG} = \overrightarrow{AH} + \frac{1}{2}\overrightarrow{AB}$$

 \overrightarrow{AI} est donc une combinaison linéaire de \overrightarrow{AH} et \overrightarrow{AB} donc les vecteurs \overrightarrow{AB} , \overrightarrow{AH} et \overrightarrow{AI} sont coplanaires.

IV. Positions relatives

1. Position relative de deux droites de l'espace

Propriété							
Soient (d) et (d') deux droites de vecteur directeurs respectifs \overrightarrow{u} et $\overrightarrow{u'}$.							
\overrightarrow{u} et $\overrightarrow{u'}$ sont colinéaires		\overrightarrow{u} et $\overrightarrow{u'}$ ne sont pas colinéaires					
(d) et (d') sont	(d) et (d') sont	(d) et (d') sont	(d) et (d') sont				
coplanaires et	coplanaires	coplanaires	non coplanaires				
strictement parallèles	et confondues	et sécantes					
(d) (d')	(d) (d')	(d)	(d)				

2. Position relative d'une droite et d'un plan

Propriété							
Soient (d) une droite de l'espace de vecteur directeurs \overrightarrow{u} et \mathcal{P} un plan de l'espace de vecteurs directeurs \overrightarrow{v} et \overrightarrow{w} .							
$\overrightarrow{u}, \overrightarrow{v}$ et \overrightarrow{w} sont coplanaires		\vec{u} , \vec{v} et \vec{w} ne sont pas coplanaires					
La droite (d) et le plan \mathcal{P}	La droite (d) est incluse	La droite (d) et le plan \mathcal{P}					
Sont strictement parallèles	dans le plan $\mathcal P$	sont sécants					
	d						

3. Position relative de deux plans

Propriété

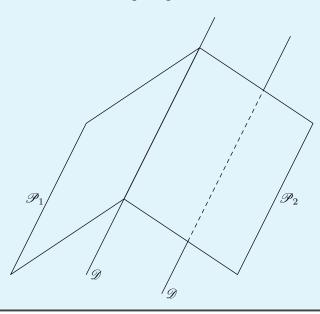
Soient \mathcal{P} et \mathcal{P}' deux plans de l'espace.

\mathcal{P} et \mathcal{P}' ont m	\mathcal{P} et \mathcal{P}' n'ont pas la même direction		
\mathcal{P} et \mathcal{P}' ont	\mathcal{P} et \mathcal{P}' n'ont pas	\mathcal{P} et \mathcal{P}' sont sécants	
(au moins) un point commun	de point commun \mathcal{P}	o or o some security	
Les plans sont confondus	Les plans sont strictement parallèles	L'intersection est une droite	
g g			
$A \in \mathcal{P}$ et $A \in \mathcal{P}'$	Les points du plans \mathcal{P} n'appartiennent pas au plan \mathcal{P}'	$(d)=\mathcal{P}\cap\mathcal{P}'$	

Théorème du toit

Soient $\mathcal D$ une droite et $\mathcal P_1$ et $\mathcal P_2$ deux plans de l'espace. Si $\mathcal D$ est parallèles aux deux plans $\mathcal P_1$ et $\mathcal P_2$ alors elle est aussi parallèle à leur intersection.

$$\begin{cases} \mathcal{D}//\mathcal{P}_1 \\ \mathcal{D}//\mathcal{P}_2 \\ \mathcal{D}' = \mathcal{P}_1 \cap \mathcal{P}_1 \end{cases} \implies \mathcal{D}//\mathcal{D}'$$

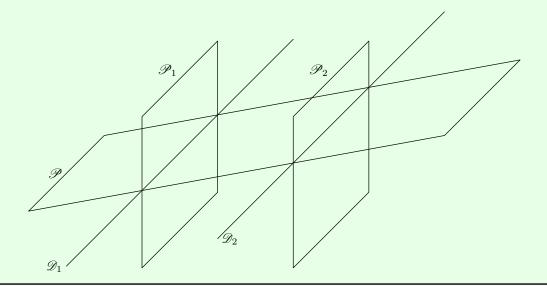


Propriété

Soient \mathcal{P}_1 et \mathcal{P}_2 deux plans parallèles de l'espace.

Tout plan sécant à l'un est sécant à l'autre et les droties d'intersections sont parallèles.

$$\begin{cases} \mathcal{P}_1//\mathcal{P}_2 \\ \mathcal{P} \cap \mathcal{P}_1 \neq \emptyset \end{cases} \implies \begin{cases} \mathcal{P}_2//\mathcal{P} \neq \emptyset \\ \mathcal{D}_1//\mathcal{D}_2 \end{cases} \text{ où } \mathcal{D}_1 = \mathcal{P} \cap \mathcal{P}_1 \text{ et } \mathcal{D}_2 = \mathcal{P} \cap \mathcal{P}_2$$



V. Base et repères de l'espace

1. Généralités

Définition

On appelle base de l'espace un triplet $(\vec{i}, \vec{j}, \vec{k})$ de vecteurs non coplanaires et deux à deux non colinéaires.

Remarque

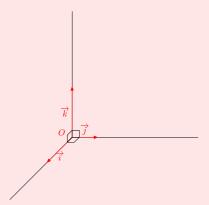
Si le triplet $(\vec{i}, \vec{j}, \vec{k})$ est une base de l'espace alors les vecteurs \vec{i} , \vec{j} et \vec{k} sont non nuls.

Définition

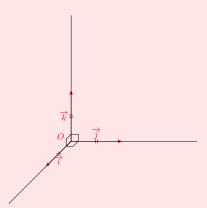
Un repère de l'espace est composé d'un point O et d'une base $(\vec{i}, \vec{j}, \vec{k})$. On le note $(O; \vec{i}, \vec{j}, \vec{k})$.

Remarque

• Si les droites $d(O, \overrightarrow{i}), d(O, \overrightarrow{j})$ et $d(O, \overrightarrow{k})$ sont perpendiculaires deux à deux alors le repère est orthogonal.



• Si, de plus, les vecteurs $\|\overrightarrow{i}\| = \|\overrightarrow{j}\| = \|\overrightarrow{k}\| = 1$, alors le repère est orthonormé.



Définition et propriété

Soit $(\vec{i}, \vec{j}, \vec{k})$ une base de l'espace.

Pour tout vecteur \vec{u} , il existe un unique triplet (x; y; z) de nombres réels tel que $\vec{u} = x\vec{i} + y\vec{j} + z\vec{k}$. Ce triplet (x; y; z) est appelé coordonnées du vecteur \vec{u} .

On note
$$\overrightarrow{u} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
.

Démonstration

$$\vec{0} = 0 \vec{i} + 0 \vec{j} + 0 \vec{k} \text{ donc } \vec{0} \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Soit $(O; \vec{i}, \vec{j}, \vec{k})$ un repère de l'espace. Soit \vec{u} un vecteur de l'espace. Soient A, B et C trois points de l'espace tels que $\overrightarrow{OA} = \overrightarrow{i}$, $\overrightarrow{OB} = \overrightarrow{i}$ et $\overrightarrow{OC} = \overrightarrow{k}$.

Soit M un point de l'espace tel que $\overrightarrow{OM} = \overrightarrow{u}$.

La droite passant par le point M et parallèle à la droite (OC) coupe le plan (OAB) en H.

• Existence de la décomposition

Soit F le point d'intersection de la droite (OA) et de la parallèle à (OB) passant par H. Soit E le point d'intersection de la droite (OB) et de la parallèle à (OA) passant par H. Le quadrilatère OEHF est donc un parallélogramme.

Ainsi $\overrightarrow{OH} = \overrightarrow{OE} + \overrightarrow{OF}$

De plus, les vecteurs \overrightarrow{OA} et \overrightarrow{OE} sont colinéaires donc il existe $x \in \mathbb{R}$ tel que $\overrightarrow{OE} = x\overrightarrow{OA}$. Les vecteurs OB et OF sont colinéaires donc il existe $y \in \mathbb{R}$ tel que $\overrightarrow{OF} = y\overrightarrow{OB}$. Donc $\overrightarrow{OH} = x\overrightarrow{OA} + y\overrightarrow{OB}$

Par construction, les vecteurs \overrightarrow{OC} et \overrightarrow{HM} sont colinéaires donc il existe $z \in \mathbb{R}$ tel que $\overrightarrow{HM} = z\overrightarrow{OC}$ Ainsi, $\overrightarrow{OM} = \overrightarrow{OH} + \overrightarrow{HM} = x\overrightarrow{OA} + y\overrightarrow{OB} + z\overrightarrow{OC} = x\overrightarrow{i} + y\overrightarrow{j} + z\overrightarrow{k}$

Unicité de la décomposition

Supposons qu'il existe deux triplets de nombres réels (x; y; z) et (x'; y'; z') tels que $\overrightarrow{u} = x \overrightarrow{i} + y \overrightarrow{j} + z \overrightarrow{k}$

et $\overrightarrow{u} = x' \overrightarrow{i} + y' \overrightarrow{j} + z \overrightarrow{k}$ On a donc $(x - x') \overrightarrow{i} + (y - y') \overrightarrow{j} + (z - z') \overrightarrow{k} = \overrightarrow{0}$ Ou encore $(x - x') \overrightarrow{i} = (y' - y) \overrightarrow{j} + (z' - z) \overrightarrow{k}$

Supposons que $x \neq x'$ soit encore $x - x' \neq 0$.

Il en vient que $\vec{i} = \frac{y'-y}{x-x'}\vec{j} + \frac{z'-z}{x-x'}\vec{k}$

Donc \overrightarrow{i} est une combinaison linéaire de \overrightarrow{j} et \overrightarrow{k}

Ou encore \vec{i} , \vec{j} et \vec{k} sont coplanaires, ce qui contredit le fait que le triplet $(\vec{i}; \vec{j}; \vec{k})$ soit une base. Donc notre hypothèse $x \neq x'$ est fausse.

Ainsi x = x'

On a donc $(y'-y)\overrightarrow{j} + (z'-z)\overrightarrow{k} = \overrightarrow{0}$. Ou encore $(y'-y)\overrightarrow{j} = (z-z')\overrightarrow{k}$.

Supposons que $y \neq y'$ ou encore $y' - y \neq 0$

On a alors $\vec{j} = \frac{z - z'}{y' - y} \vec{k}$.

Les vecteurs \vec{i} et \vec{j} sont donc colinéaires, ce qui contredit le fait que le triplet $(\vec{i}; \vec{j}; \vec{k})$ soit une

Donc notre hypothèse $y \neq y'$ est fausse.

Ainsi y = y'

On a donc $(z-z')\vec{k} = \vec{0}$ d'où z=z'.

Ainsi (x; y; z) = (x'; y'; z').

Il existe donc un unique triplet de réels (x; y; z) tel que $\vec{u} = x\vec{i} + y\vec{j} + z\vec{k}$.

Remarque

Dans une base $(\vec{i}, \vec{j}, \vec{k})$, on a:

•
$$\vec{0} \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\bullet \overrightarrow{i} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

•
$$\vec{j} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$

•
$$\vec{k} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

Propriété

Soit une base $(\vec{i}, \vec{j}, \vec{k})$.

Soit \vec{u} et \vec{v} deux vecteurs de l'espace dont les coordonnées respectives dans cette base ont $\begin{pmatrix} x \\ y \end{pmatrix}$ et $\begin{pmatrix} x \\ y' \\ z' \end{pmatrix}$

avec x, x', y, y', z et z' six nombres réels. Soit $\lambda \in \mathbb{R}$.

On a:

•
$$(\vec{u} + \vec{v}) \begin{pmatrix} x + x' \\ y + y' \\ z + z' \end{pmatrix}$$

•
$$(\lambda \vec{u}) \begin{pmatrix} \lambda x \\ \lambda y \\ \lambda z \end{pmatrix}$$

Démonstration

Soit une base $(\vec{i}, \vec{j}, \vec{k})$.

Soit \vec{u} et \vec{v} deux vecteurs de l'espace dont les coordonnées respectives dans cette base sont $\begin{pmatrix} x \\ y \end{pmatrix}$ et $\begin{pmatrix} x \\ y' \\ z' \end{pmatrix}$

avec x, x', y, y', z et z' six nombres réels.

Soit
$$\lambda \in \mathbb{R}$$
. $\overrightarrow{u} = x \overrightarrow{i} + y \overrightarrow{j} + z \overrightarrow{k}$ et $\overrightarrow{v} = x' \overrightarrow{i} + y' \overrightarrow{j} + z' \overrightarrow{k}$

Donc $\overrightarrow{u} + \overrightarrow{v} = x\overrightarrow{i} + y\overrightarrow{j} + z\overrightarrow{k} + x'\overrightarrow{i} + y'\overrightarrow{j} + z'\overrightarrow{k} = (x + x')\overrightarrow{i} + (y + y')\overrightarrow{j} + (z + z')\overrightarrow{k}$ Ainsi $(\overrightarrow{u} + \overrightarrow{v}) \begin{pmatrix} x + x' \\ y + y' \\ z + z' \end{pmatrix}$

 $\lambda \overrightarrow{u} = \lambda \left(\overrightarrow{x} \overrightarrow{i} + y \overrightarrow{j} + z \overrightarrow{k} \right) = \lambda \overrightarrow{i} + \lambda y \overrightarrow{j} + z \lambda \overrightarrow{k}$

Donc $(\lambda \vec{u}) \begin{pmatrix} \lambda x \\ \lambda y \end{pmatrix}$

Exemple

Dans une base $(\vec{i}, \vec{j}, \vec{k})$, on a $\vec{u} \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$ et $\vec{v} \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$.

Déterminer les coordonnées des vecteurs $\vec{u} + \vec{v}$ et $\frac{1}{6}\vec{u}$.

Réponse

$$\vec{u} + \vec{v} \begin{pmatrix} 1+1\\2+1\\3+2 \end{pmatrix}$$
 soit $\vec{u} + \vec{v} \begin{pmatrix} 2\\3\\5 \end{pmatrix}$

$$\frac{1}{6}\overrightarrow{u}\begin{pmatrix} \frac{1}{6} \times 1\\ \frac{1}{6} \times 2\\ \frac{1}{6} \times 3 \end{pmatrix} \text{ soit } \frac{1}{6}\overrightarrow{u}\begin{pmatrix} \frac{1}{6}\\ \frac{1}{3}\\ \frac{1}{2} \end{pmatrix}$$

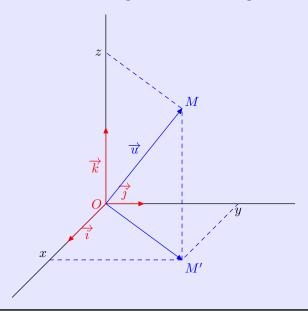
Définition

Soit $(O; \vec{i}, \vec{j}, \vec{k})$ un repère de l'espace.

Soit M un point de l'espace.

Si il existe trois réels x, y et z tels que $\overrightarrow{OM} = x \vec{i} + y \vec{j} + z \vec{k}$ alors (x; y; z) sont les coordonnées du point M dans le repère $(O; \vec{i}, \vec{j}, \vec{k})$.

x est appelé abscisse, y ordonnée et z la cote du point M dans ce repère.



Propriété

Soit $(O; \vec{i}, \vec{j}, \vec{k})$ un repère de l'espace.

Soient A et B des points de l'espaces de coordonnées respectives dans ce repère $(x_A; y_A; z_A)$ et $(x_B; y_B; z_B)$ avec x_A, x_B, y_A, y_B, z_A et z_B six nombres réels.

- Les coordonnées du milieu du segment [AB] sont $\left(\frac{x_A+x_B}{2};\frac{y_A+y_B}{2};\frac{z_A+z_B}{2}\right)$
- Deux vecteurs sont colinéaires si et seulement si leurs coordonnées sont proportionnelles.

Démonstration

Soit $(O; \vec{i}, \vec{j}, \vec{k})$ un repère de l'espace.

Soient A et B des points de l'espaces de coordonnées respectives dans ce repère ($x_A; y_A; z_A$) et ($x_B; y_B; z_B$) avec x_A, x_B, y_A, y_B, z_A et z_B six nombres réels.

$$\overrightarrow{AB} = \overrightarrow{AO} + \overrightarrow{OB} = -\overrightarrow{OA} + \overrightarrow{OB} \text{ donc}$$

$$\overrightarrow{AB} \begin{pmatrix} -x_A + x_B \\ -y_A + y_B \\ -z_A + z_B \end{pmatrix} \text{ ou encore } \overrightarrow{AB} \begin{pmatrix} x_B - x_A \\ y_B - y_A \\ z_B - z_A \end{pmatrix}$$

• Soit I le milieu du segment [AB]

$$\overrightarrow{AI} = \frac{1}{2}\overrightarrow{AB} \operatorname{donc} \overrightarrow{AI} \begin{pmatrix} \frac{x_B - x_A}{y_B - y_A} \\ \frac{z_B - z_A}{2} \end{pmatrix}$$

$$\operatorname{Or} \overrightarrow{AI} \begin{pmatrix} x_I - x_A \\ y_I - y_A \\ z_I - z_A \end{pmatrix}$$

$$\operatorname{Donc} \begin{cases} x_I - x_A = \frac{x_B - x_A}{2} \\ y_I - y_A = \frac{y_B - y_A}{2} \\ z_I - z_A = \frac{z_B - z_A}{2} \end{cases} \iff \begin{cases} x_I = x_A + \frac{x_B - x_A}{2} \\ y_I = y_A + \frac{y_B - y_A}{2} \\ z_I = z_A + \frac{z_B - z_A}{2} \end{cases} \Leftrightarrow \begin{cases} x_I = \frac{x_A + x_B}{2} \\ x_I = \frac{y_A + y_B}{2} \\ x_I = \frac{z_A + z_B}{2} \end{cases}$$

$$\operatorname{Done} I\left(\frac{x_A + x_B}{2}, \frac{y_A + y_B}{2}, \frac{z_A + z_B}{2}\right)$$

•
$$\vec{u} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
 et $\vec{v} \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix}$ sont deux vecteurs colinéaires $\iff \exists \lambda \in \mathbb{R}, \vec{u} = \lambda \vec{v} \iff \begin{cases} x = \lambda x' \\ y = \lambda y' \\ z = \lambda z' \end{cases}$ coordonnées de \vec{u} et \vec{v} sont proportionnelles

Exemple

Dans le repère de l'espace $\left(O;\overrightarrow{i},\overrightarrow{j},\overrightarrow{k}\right)$, on a $A(1;2;3),\,B(1;1;2)$ et C(1;4;5).

- 1. Déterminer les coordonnées des vecteurs \overrightarrow{AB} et \overrightarrow{AC} .
- 2. Les vecteurs \overrightarrow{AB} et \overrightarrow{AC} sont-ils colinéaires?
- 3. Déterminer les coordonnées du point I, milieu du segment [BC].

Réponse

1.
$$\overrightarrow{AB} \begin{pmatrix} 1-1\\1-2\\2-3 \end{pmatrix}$$
 soit $\overrightarrow{AB} \begin{pmatrix} 0\\-1\\-1 \end{pmatrix}$

$$\overrightarrow{AC} \begin{pmatrix} 1-1\\4-2\\5-3 \end{pmatrix}$$
 soit $\overrightarrow{AC} \begin{pmatrix} 0\\2\\2 \end{pmatrix}$

- 2. On remarque que $\overrightarrow{AC} = -2\overrightarrow{AC}$ Donc les vecteurs \overrightarrow{AB} et \overrightarrow{AC} sont colinéaires.
- 3. I est le milieu du segment [BC] donc $I\left(\frac{1+0}{2};\frac{1+4}{2};\frac{2+2}{2}\right)$ soit $I\left(\frac{1}{2};\frac{5}{2};2\right)$

2. Représentation paramétrique d'une droite

Définition

Soit $\left(O; \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k}\right)$ un repère de l'espace.

Soient $A(x_A;y_A;z_A)$ un point de l'espace et $\overrightarrow{u} \begin{pmatrix} a \\ b \\ c \end{pmatrix}$ un vecteur non nul de l'espace.

Pour tout point M(x; y; z) de la droite $d(A; \overrightarrow{u})$, il existe $t \in \mathbb{R}$ tel que :

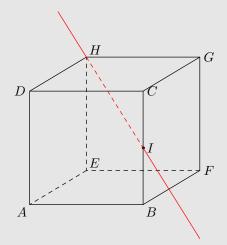
$$\begin{cases} x = x_A + at \\ y = y_A + bt \\ z = zA + ct \end{cases}$$

Ce système est appelé représentation paramétrique de la droite (d)

Exemple

Soit ABCDEFGH un cube. On considère le repère $(A; \overrightarrow{AB}, \overrightarrow{AE}, \overrightarrow{AD})$. Déterminer la représentation paramétrique de la droite (HI) où I est le milieu du segment [BC].

Réponse



On a H(0;1;1) et $\overrightarrow{HI} = \overrightarrow{HG} + \overrightarrow{GC} + \overrightarrow{CI} = \overrightarrow{AB} + \overrightarrow{EA} + \frac{1}{2}\overrightarrow{CB} = \overrightarrow{AB} - \overrightarrow{AE} + \frac{1}{2}\overrightarrow{DA} = \overrightarrow{AB} - \overrightarrow{AE} - \frac{1}{2}\overrightarrow{AD}$

Donc $\overrightarrow{HI} \begin{pmatrix} 1 \\ -1 \\ -\frac{1}{2} \end{pmatrix}$

La représentation paramétrique de la droite (HI) est donc :

$$\begin{cases} x = 0 + 1t \\ y = 1 + (-1)t \\ z = 1 + \left(-\frac{1}{2}\right)t \end{cases}$$

soit

$$\begin{cases} x = t \\ y = 1 - t \\ z = 1 - \frac{t}{2} \end{cases}$$

VI. Approfondissement

1. Barycentre d'une famille d'un système pondéré de points

Définition

Soit $n \in \mathbb{N}$.

Soient $A_1, A_2, ..., A_n$ n points de l'espace.

Soient $\lambda_1, \lambda_2, ..., \lambda_n$ n nombres réels tels que $\sum_{k=1}^n \lambda_k \neq 0$.

Un point pondéré est un couple composé d'un point et d'un réel.

L'ensemble des points A_i associés à un réel λ_i , noté $(A_i, \lambda_i)_{i \in \mathbb{I}1:n\mathbb{I}}$, s'appelle un système de points pondérés.

Définition

Soit $(A_i, \lambda_i)_{i \in \mathbb{I} 1:n\mathbb{I}}$ un système de points pondérés.

Soit G le point de l'espace tel que $\sum_{i=1}^{n} \lambda_i \overrightarrow{GA_i} = \overrightarrow{0}$.

Le point G est appelé barycentre du système pondéré de points $(A_i, \lambda_i)_{i \in [\![1:n]\!]}$. Il est unique.

Définition

Soit $\left(A_i,\lambda_i\right)_{i\in \llbracket 1;n\rrbracket}$ un système de points pondérés.

Soit G le barycentre du système pondéré de points $(A_i, \lambda_i)_{i \in [\![1:n]\!]}$.

Si tous les λ_i sont égaux alors le point G est appelé isobarycentre du système de point $(A_i)_{i\in [1;n]}$.

Propriété

Soit $(A_i,\lambda_i)_{i\in \llbracket 1;n\rrbracket}$ un système pondéré de points pondérés.

Soit G le barycentre du système pondéré de points $(A_i, \lambda_i)_{i \in [\![1:n]\!]}$.

Pour tout point de l'espace M, $\sum_{i=1}^n \lambda_i \overrightarrow{MA_i} = \left(\sum_{i=1}^n \lambda_i\right) \overrightarrow{MG}$

Démonstration

Soit $(A_i,\lambda_i)_{i\in \llbracket 1;n\rrbracket}$ un système pondéré de points.

Soit G le barycentre du système pondéré de points $(A_i, \lambda_i)_{i \in \mathbb{I} 1:n\mathbb{I}}$.

Soit M un point quelconque de l'espace.

On a donc
$$\sum_{i=1}^{n} \lambda_i \overrightarrow{GA_i} = \overrightarrow{0}$$
.

$$\sum_{i=1}^{n} \lambda_{i} \overrightarrow{GA_{i}} = \overrightarrow{0} \iff \sum_{i=1}^{n} \lambda_{i} \left(\overrightarrow{GM} + \overrightarrow{MA_{i}} \right) = \overrightarrow{0} \iff \sum_{i=1}^{n} \lambda_{i} \overrightarrow{GM} + \lambda_{i} \overrightarrow{MA_{i}} = \overrightarrow{0} \iff \lambda_{i} \overrightarrow{MA_{i}} = -\sum_{i=1}^{n} \lambda_{i} \overrightarrow{GM}$$

$$\iff \sum_{i=1}^n \lambda_i \overrightarrow{MA_i} = -\left(\sum_{i=1}^n \lambda_i\right) \overrightarrow{GM} \iff \sum_{i=1}^n \lambda_i \overrightarrow{MA_i} = \left(\sum_{i=1}^n \lambda_i\right) \overrightarrow{MG}$$

Remarque

Dans la propriété précédente, en posant $\lambda = \sum_{i=1}^{n} \lambda_{i}$, on a :

$$\sum_{i=1}^{n} \lambda_i \overrightarrow{MA_i} = \lambda \overrightarrow{MG}$$

ou encore

$$\sum_{i=1}^{n} \frac{\lambda_i}{\lambda} \overrightarrow{MA_i} = \overrightarrow{MG}$$

Cas particulier d'un système pondéré de deux points

Soit (A_1, λ_1) et (A_2, λ_2) deux points de l'espace pondérés tels que $\lambda_1 + \lambda_2 \neq 0$.

Soit G le barycentre du système de points pondérés $(A_i, \lambda_i)_{i \in [1;2]}$.

On a donc $\lambda_1 \overrightarrow{GA_1} + \lambda_2 \overrightarrow{GA_2} = \overrightarrow{0}$ Soit $\lambda_1 \overrightarrow{GA_1} = -\lambda_2 \overrightarrow{GA_2}$.

On sait que $\lambda_1 + \lambda_2 \neq 0$ donc $\lambda_1 \neq 0$ ou $\lambda_2 \neq 0$.

Supposons que $\lambda_1 \neq 0$. On a donc $\overrightarrow{GA_1} = -\frac{\lambda_2}{\lambda_1} \overrightarrow{GA_2}$

Les vecteurs $\overrightarrow{GA_1}$ et $\overrightarrow{GA_2}$ sont donc colinéaires. Donc les points G, A_1 et A_2 sont alignés.

Donc $G \in (A_1 A_2)$

Si $\lambda_1=\lambda_2,$ alors $\lambda_1\neq 0$ Pour tout point M de l'espace, on a :

$$\frac{\lambda_1}{\lambda_1 + \lambda_2} \overrightarrow{MA_1} + \frac{\lambda_2}{\lambda_1 + \lambda_2} \overrightarrow{MA_2} = \overrightarrow{MG}$$

$$\lambda_1 \longrightarrow \lambda_1 \longrightarrow$$

$$\overrightarrow{\frac{\lambda_1}{2\lambda_1}}\overrightarrow{MA_1} + \overrightarrow{\frac{\lambda_1}{2\lambda_1}}\overrightarrow{MA_2} = \overrightarrow{MG}$$

$$\frac{1}{2}\overrightarrow{MA_1} + \frac{1}{2}\overrightarrow{MA_2} = \overrightarrow{MG}$$

En particulier pour le point A_1 , on a :

$$\frac{1}{2}\overrightarrow{A_1}\overrightarrow{A_1} + \frac{1}{2}\overrightarrow{A_1}\overrightarrow{A_2} = \overrightarrow{A_1}\overrightarrow{G}$$

$$\frac{1}{2}\overrightarrow{0} + \frac{1}{2}\overrightarrow{A_1}\overrightarrow{A_2} = \overrightarrow{A_1}\overrightarrow{G}$$

$$\overrightarrow{A_1G} = \frac{1}{2}\overrightarrow{A_1A_2}$$

Le point G est donc le milieu du segment $[A_1A_2]$.

Cas particulier d'un système pondéré de trois points

Soit $(A_1, \lambda_1), (A_2, \lambda_2)$ et (A_3, λ_3) trois points de l'espace pondérés tels que $\lambda_1 + \lambda_2 + \lambda_3 \neq 0$.

Soit G le barycentre du système de points pondérés $(A_i, \lambda_i)_{i \in [1:3]}$.

Supposons que $\lambda_1 + \lambda_2 \neq 0$ (les autres cas sont analogues). Soit G' le barycentre du système de points pondérés $(A_i, \lambda_i)_{i \in [\![1:2]\!]}$

On a donc $\lambda_1 \overrightarrow{GA_1} + \lambda_2 \overrightarrow{GA_2} + \lambda_3 \overrightarrow{GA_3} = \overrightarrow{0}$ $(\lambda_1 + \lambda_2) \overrightarrow{GG'} + \lambda_3 \overrightarrow{GA_3} = \overrightarrow{0}$

Donc le point G est le barycentre de $(G', \lambda_1 + \lambda_2)$ et (A_3, λ_3) .

Le point G se trouve donc sur la droite $(G'A_3)$.

Si $\lambda_1=\lambda_2=\lambda_3,$ alors $\lambda_1\neq 0$ Pour tout point M de l'espace, on a :

$$\begin{split} \frac{\lambda_1}{\lambda_1 + \lambda_2 + \lambda_3} \overrightarrow{MA_1} + \frac{\lambda_2}{\lambda_1 + \lambda_2 + \lambda_3} \overrightarrow{MA_2} + \frac{\lambda_3}{\lambda_1 + \lambda_2 + \lambda_3} \overrightarrow{MA_3} &= \overrightarrow{MG} \\ \frac{\lambda_1}{3\lambda_1} \overrightarrow{MA_1} + \frac{\lambda_1}{3\lambda_1} \overrightarrow{MA_2} + \frac{\lambda_1}{3\lambda_1} \overrightarrow{MA_3} &= \overrightarrow{MG} \\ \frac{1}{3} \overrightarrow{MA_1} + \frac{1}{3} \overrightarrow{MA_2} + \frac{1}{3} \overrightarrow{MA_3} &= \overrightarrow{MG} \\ \frac{1}{3} \overrightarrow{MA_1} + \frac{1}{3} \overrightarrow{MA_2} + \frac{1}{3} \overrightarrow{MA_3} &= \overrightarrow{MG} \end{split}$$

Soit I le milieu du segment $[A_1A_2]$. On a donc

$$2\overrightarrow{MI} + 1\overrightarrow{3}\overrightarrow{MA_3} = \overrightarrow{MG}$$

Soit I le milieu du segment $[A_1A_2]$. On a donc

En particulier pour le point I, on a :

$$\frac{2}{3}\overrightarrow{II} + \frac{1}{3}\overrightarrow{IA_3} = \overrightarrow{IG}$$
$$\frac{1}{3}\overrightarrow{IA_3} = \overrightarrow{IG}$$
$$\overrightarrow{IG} = \frac{1}{3}\overrightarrow{IA_3}$$

Donc $G \in (IA_3)$ (G appartient à la médiane du triangle $A_1A_2A_3$ issue de A_3).

En particulier, le point G est au tiers du segment $[IA_3]$ en partant de I (ou au deux tiers du segment $[IA_3]$ en partant de A_3).

De même on aurait G appartient à la médiane du triangle $A_1A_2A_3$ issue de A_2 et G appartient à la médiane du triangle $A_1A_2A_3$ issue de A_1 .

G est donc le point de concours des trois médianes du triangle $A_1A_2A_3$.

G est donc le centre de gravité du triangle $A_1A_2A_3$.

Cas particulier d'un système pondéré de quatre points

Soit $(A_1, \lambda_1), (A_2, \lambda_2), (A_3, \lambda_3)$ et (A_4, λ_4) quatre points de l'espace pondérés tels que $\lambda_1 + \lambda_2 + \lambda_3 + \lambda_4 \neq 0$. Soit G le barycentre du système de points pondérés $(A_i, \lambda_i)_{i \in [\![1;4]\!]}$.

On a donc $\lambda_1\overrightarrow{GA_1}+\lambda_2\overrightarrow{GA_2}+\lambda_3\overrightarrow{GA_3}+\lambda_4\overrightarrow{GA_4}=\overrightarrow{0}$

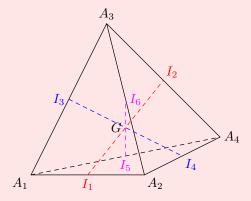
Si $\lambda_1=\lambda_2=\lambda_3=\lambda_3,$ alors $\lambda_1\neq 0$ Pour tout point M de l'espace, on a :

$$\frac{1}{4}\overrightarrow{MA_1} + \frac{1}{4}\overrightarrow{MA_2} + \frac{1}{4}\overrightarrow{MA_3} + \frac{1}{4}\overrightarrow{MA_4} = \overrightarrow{MG}$$

Soient I_1 le milieu du segment $[A_1A_2]$ et I_2 le milieu du segment $[A_3A_4]$. On a donc

$$\frac{2}{4}\overrightarrow{MI_1} + \frac{2}{4}\overrightarrow{MI_2} = \overrightarrow{MG} \text{ donc } \frac{1}{2}\overrightarrow{MI_1} + \frac{1}{2}\overrightarrow{MI_2} = \overrightarrow{MG}$$

Donc G est le milieu du segment $[I_1I_2]$. En faisant de même avec d'autres segments opposés, on obtiendrait que G est toujours le milieu du segment joignant les milieux d'arêtes opposées du tétraèdre.



On pourrait remarquer que:

$$\frac{1}{4}\overrightarrow{MA_1} + \frac{1}{4}\overrightarrow{MA_2} + \frac{1}{4}\overrightarrow{MA_3} + \frac{1}{4}\overrightarrow{MA_4} = \overrightarrow{MG}$$

amène, en appelant G_4 l'isobarycentre des points $A_1,\,A_2$ et A_3 :

$$3 \overrightarrow{MG_4} + \frac{1}{4} \overrightarrow{MA_4} = \overrightarrow{MG}$$

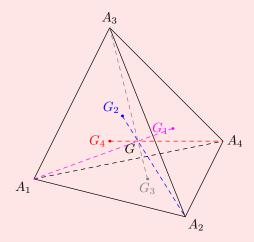
En particulier pour le point G_4 , on a :

$$\frac{3}{4}\overrightarrow{G_4G_4} + \frac{1}{4}\overrightarrow{G_4A_4} = \overrightarrow{G_4G}$$

$$\frac{1}{4}\overrightarrow{G_4A_4} = \overrightarrow{G_4G}$$

Et donc $G \in (G_4A_4)$.

On a les mêmes formules en utilisant les isobarycentres des autres faces du tétraèdre.



Remarque - suite

Dans le cas où les points A_1 , A_2 , A_3 et A_4 sont coplanaires, $A_1A_2A_3A_4$ est un quadrilatère. Si $\lambda_1 = \lambda_2 = \lambda_3 = \lambda_4 \neq 0$, on a alors pour tout point M du plan :

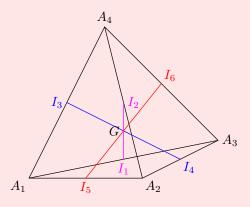
$$\frac{1}{4}\overrightarrow{MA_1} + \frac{1}{4}\overrightarrow{MA_2} + \frac{1}{4}\overrightarrow{MA_3} + \frac{1}{4}\overrightarrow{MA_4} = \overrightarrow{MG}$$

Soit I_1 le milieu de la diagonale $[A_1A_3]$ et I_2 le milieu de la diagonale $[A_2A_4]$, on a :

$$\frac{2}{4}\overrightarrow{MI_1} + \frac{2}{4}\overrightarrow{MI_2} = \overrightarrow{MG}$$

$$\frac{1}{2}\overrightarrow{MI_1} + \frac{1}{2}\overrightarrow{MI_2} = \overrightarrow{MG}$$

Le point G est donc le milieu du segment $[I_1I_2]$.



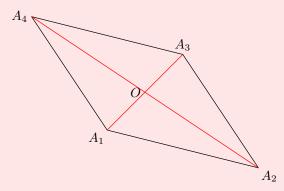
Dans le cas où les points A_1 , A_2 , A_3 et A_4 sont coplanaires et forment un parallélogramme $A_1A_2A_3A_4$.

On a donc $\overrightarrow{A_1A_2} = \overrightarrow{A_4A_3}$. Supposons que $\lambda_1 = \lambda_2 = \lambda_3 = \lambda_4 \neq .$

Soit O le centre du parallélogramme, c'est-à-dire le point d'intersection de ses diagonales.

On a donc $\overrightarrow{OA_1} + \overrightarrow{OA_3} = \overrightarrow{0}$ et $\overrightarrow{OA_2} + \overrightarrow{OA_4} = \overrightarrow{0}$ Donc $\overrightarrow{OA_1} + \overrightarrow{OA_3} + \overrightarrow{OA_2} + \overrightarrow{OA_4} = \overrightarrow{0}$

Donc O est l'isobarycentre des points A_1 , A_2 , A_3 et A_4 .



Fonction vectorielle de Leibniz

Définition

Soit $(A_i, \lambda_i)_{i \in [\![1:n]\!]}$ un système pondéré de points.

On appelle fonction vectorielle de Leibniz associée au système de points pondérés $(A_i, \lambda_i)_{i \in [\![1:n]\!]}$ la fonction, notée \vec{f} , qui, à tout point M de l'espace, associe le vecteur

$$\overrightarrow{f}(M) = \sum_{i=1}^{n} \lambda_i \overrightarrow{MA_i}$$

Remarque

Soit $\left(A_i,\lambda_i\right)_{i\in \llbracket 1;n\rrbracket}$ une famille d'un système pondéré .

Soit \overrightarrow{f} la fonction vectorielle de Leibniz associée au système de points pondérés $(A_i, \lambda_i)_{i \in \llbracket 1; n \rrbracket}$.

Supposons que $\sum_{i=1}^{n} \lambda_i = 0$.

Soit M et N deux points de l'espace.

 $\overrightarrow{f}(M) = \sum_{i=1}^{n} \lambda_i \overrightarrow{MA_i}$

et

 $\overrightarrow{f}(N) = \sum_{i=1}^{n} \lambda_i \overrightarrow{NA_i}$

Donc

$$\overrightarrow{f}(M) - \overrightarrow{f}(N) = \left(\sum_{i=1}^{n} \lambda_{i} \overrightarrow{MA_{i}}\right) - \left(\sum_{i=1}^{n} \lambda_{i} \overrightarrow{NA_{i}}\right)$$

$$\overrightarrow{f}(M) - \overrightarrow{f}(N) = \sum_{i=1}^{n} \lambda_{i} \left(\overrightarrow{MA_{i}} - vectNA_{i}\right)$$

$$\overrightarrow{f}(M) - \overrightarrow{f}(N) = \sum_{i=1}^{n} \lambda_{i} \left(\overrightarrow{MA_{i}} + vectA_{i}N\right)$$

$$\overrightarrow{f}(M) - \overrightarrow{f}(N) = \sum_{i=1}^{n} \lambda_{i} \overrightarrow{MN} = \left(\sum_{i=1}^{n} \lambda_{i}\right) \overrightarrow{MN} = 0 \overrightarrow{MN} = \overrightarrow{0}$$

$$\overrightarrow{f}(M) = \overrightarrow{f}(N)$$

donc pour tous points M,N de l'espace, $\overrightarrow{f}(M)=\overrightarrow{f}(N)$

On peut donc dire que si $\sum_{i=1}^{n} \lambda_i = 0$ alors la fonction vectorielle de Leibniz est constante.

Supposons que $\sum_{i=1}^{n} \lambda_i \neq 0$.

Soit G le barycentre du système de points pondérés $(A_i, \lambda_i)_{i \in [1:n]}$.

On a:

$$\overrightarrow{f}(M) = \left(\sum_{i=1}^n \lambda_i\right) \overrightarrow{MG}$$

En particulier, on a, pour un point connu O (par exemple, l'origine d'un repère) :

$$\overrightarrow{OG} = \frac{1}{\sum_{i=1}^{n} \lambda_i} \overrightarrow{f}(O) = \frac{1}{\sum_{i=1}^{n} \lambda_i} \sum_{i=1}^{n} \lambda_i \overrightarrow{OA_i}$$

Remarque - suite

Ainsi on a, dans l'espace, si ${\cal O}$ est l'origine d'un repère :

$$\begin{cases} x_G = \frac{1}{\sum_{i=1}^n \lambda_i} \sum_{i=1}^n \lambda_i x_{A_i} \\ y_G = \frac{1}{\sum_{i=1}^n \lambda_i} \sum_{i=1}^n \lambda_i y_{A_i} \\ z_G = \frac{1}{\sum_{i=1}^n \lambda_i} \sum_{i=1}^n \lambda_i z_{A_i} \end{cases}$$